Characterization of Dielectric Nanocomposites with Electrostatic Force Microscopy

Autor: D. El Khoury, Michel Frechette, Jerome Castellon, Sebastien Balme, Mikhael Bechelany, Jean-Charles Laurentie, V. Fedorenko, Michel Ramonda, Richard Arinero
Přispěvatelé: Institut d’Electronique et des Systèmes (IES), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Groupe énergie et matériaux (GEM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut Européen des membranes (IEM), Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM), Institut de Recherche d'Hydro-Québec [Varennes] (IREQ), Composants à Nanostructure pour le moyen infrarouge (NANOMIR)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Scanning
Scanning, Wiley-Blackwell: No OnlineOpen, 2017, 2017, pp.4198519. ⟨10.1155/2017/4198519⟩
Scanning, Vol 2017 (2017)
ISSN: 0161-0457
DOI: 10.1155/2017/4198519⟩
Popis: International audience; Nanocomposites physical properties unexplainable by general mixture laws are usually supposed to be related to interphases, highly present at the nanoscale. The intrinsic dielectric constant of the interphase and its volume need to be considered in the prediction of the effective permittivity of nanodielectrics, for example. The electrostatic force microscope (EFM) constitutes a promising technique to probe interphases locally. This work reports theoretical finite-elements simulations and experimental measurements to interpret EFM signals in front of nanocomposites with the aim of detecting and characterizing interphases. According to simulations, we designed and synthesized appropriate samples to verify experimentally the ability of EFM to characterize a nanoshell covering nanoparticles, for different shell thicknesses. This type of samples constitutes a simplified electrostatic model of a nanodielectric. Experiments were conducted using either DC or AC-EFM polarization, with force gradient detection method. A comparison between our numerical model and experimental results was performed in order to validate our predictions for general EFM-interphase interactions.
Databáze: OpenAIRE