Quantizations of $$D=3$$ D = 3 Lorentz symmetry
Autor: | V. N. Tolstoy, Jerzy Lukierski |
---|---|
Rok vydání: | 2017 |
Předmět: |
Physics
Physics and Astronomy (miscellaneous) 010308 nuclear & particles physics lcsh:Astrophysics 01 natural sciences Simple (abstract algebra) lcsh:QB460-466 0103 physical sciences Lie algebra lcsh:QC770-798 lcsh:Nuclear and particle physics. Atomic energy. Radioactivity Isomorphism Algebraic number Twist Mathematics::Representation Theory 010306 general physics Engineering (miscellaneous) Mathematical physics |
Zdroj: | European Physical Journal C: Particles and Fields, Vol 77, Iss 4, Pp 1-12 (2017) European Physical Journal |
ISSN: | 1434-6052 1434-6044 |
DOI: | 10.1140/epjc/s10052-017-4786-9 |
Popis: | Using the isomorphism $${\mathfrak {o}}(3;{\mathbb {C}})\simeq {\mathfrak {sl}}(2;{\mathbb {C}})$$ o ( 3 ; C ) ≃ sl ( 2 ; C ) we develop a new simple algebraic technique for complete classification of quantum deformations (the classical r-matrices) for real forms $${\mathfrak {o}}(3)$$ o ( 3 ) and $${\mathfrak {o}}(2,1)$$ o ( 2 , 1 ) of the complex Lie algebra $${\mathfrak {o}}(3;{\mathbb {C}})$$ o ( 3 ; C ) in terms of real forms of $${\mathfrak {sl}}(2;{\mathbb {C}})$$ sl ( 2 ; C ) : $${\mathfrak {su}}(2)$$ su ( 2 ) , $${\mathfrak {su}}(1,1)$$ su ( 1 , 1 ) and $${\mathfrak {sl}}(2;{\mathbb {R}})$$ sl ( 2 ; R ) . We prove that the $$D=3$$ D = 3 Lorentz symmetry $${\mathfrak {o}}(2,1)\simeq {\mathfrak {su}}(1,1)\simeq {\mathfrak {sl}}(2;{\mathbb {R}})$$ o ( 2 , 1 ) ≃ su ( 1 , 1 ) ≃ sl ( 2 ; R ) has three different Hopf-algebraic quantum deformations, which are expressed in the simplest way by two standard $${\mathfrak {su}}(1,1)$$ su ( 1 , 1 ) and $${\mathfrak {sl}}(2;{\mathbb {R}})$$ sl ( 2 ; R ) q-analogs and by simple Jordanian $${\mathfrak {sl}}(2;{\mathbb {R}})$$ sl ( 2 ; R ) twist deformation. These quantizations are presented in terms of the quantum Cartan–Weyl generators for the quantized algebras $${\mathfrak {su}}(1,1)$$ su ( 1 , 1 ) and $${\mathfrak {sl}}(2;{\mathbb {R}})$$ sl ( 2 ; R ) as well as in terms of quantum Cartesian generators for the quantized algebra $${\mathfrak {o}}(2,1)$$ o ( 2 , 1 ) . Finally, some applications of the deformed $$D=3$$ D = 3 Lorentz symmetry are mentioned. |
Databáze: | OpenAIRE |
Externí odkaz: |