A Quasiconvex Asymptotic Function with Applications in Optimization
Autor: | Juan Enrique Martínez-Legaz, Nicolas Hadjisavvas, Felipe Lara |
---|---|
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
021103 operations research Control and Optimization Optimization problem Applied Mathematics 0211 other engineering and technologies Convex set Asymptotic cones 010103 numerical & computational mathematics 02 engineering and technology Function (mathematics) Asymptotic functions Quasiconvexity Management Science and Operations Research 01 natural sciences Image (mathematics) Set (abstract data type) Quasiconvex function Compact space Non-convex optimization Theory of computation 0101 mathematics Mathematics |
Zdroj: | Recercat. Dipósit de la Recerca de Catalunya instname Dipòsit Digital de Documents de la UAB Universitat Autònoma de Barcelona Recercat: Dipósit de la Recerca de Catalunya Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya) |
ISSN: | 1573-2878 0022-3239 |
DOI: | 10.1007/s10957-018-1317-2 |
Popis: | We introduce a new asymptotic function, which is mainly adapted to quasiconvex functions. We establish several properties and calculus rules for this concept and compare it to previous notions of generalized asymptotic functions. Finally, we apply our new definition to quasiconvex optimization problems: we characterize the boundedness of the function, and the nonemptiness and compactness of the set of minimizers. We also provide a sufficient condition for the closedness of the image of a nonempty closed and convex set via a vector-valued function. |
Databáze: | OpenAIRE |
Externí odkaz: |