A Quasiconvex Asymptotic Function with Applications in Optimization

Autor: Juan Enrique Martínez-Legaz, Nicolas Hadjisavvas, Felipe Lara
Rok vydání: 2018
Předmět:
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
ISSN: 1573-2878
0022-3239
DOI: 10.1007/s10957-018-1317-2
Popis: We introduce a new asymptotic function, which is mainly adapted to quasiconvex functions. We establish several properties and calculus rules for this concept and compare it to previous notions of generalized asymptotic functions. Finally, we apply our new definition to quasiconvex optimization problems: we characterize the boundedness of the function, and the nonemptiness and compactness of the set of minimizers. We also provide a sufficient condition for the closedness of the image of a nonempty closed and convex set via a vector-valued function.
Databáze: OpenAIRE