A Neuro-ontology for the neurological examination
Autor: | Steven U. Brint, Daniel B. Hier |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Neurological examination
UMLS Metathesaurus Computer science Health Informatics 02 engineering and technology Ontology (information science) computer.software_genre ENCODE SNOMED CT lcsh:Computer applications to medicine. Medical informatics Health informatics 03 medical and health sciences Component (UML) 0202 electrical engineering electronic engineering information engineering medicine Humans Electronic health records 030304 developmental biology Neurologic Examination 0303 health sciences medicine.diagnostic_test business.industry Ontology Health Policy Unified Medical Language System Systematized Nomenclature of Medicine Computer Science Applications Test case Biological Ontologies lcsh:R858-859.7 020201 artificial intelligence & image processing Artificial intelligence business computer Natural language processing Research Article |
Zdroj: | BMC Medical Informatics and Decision Making, Vol 20, Iss 1, Pp 1-9 (2020) BMC Medical Informatics and Decision Making |
ISSN: | 1472-6947 |
DOI: | 10.1186/s12911-020-1066-7 |
Popis: | Background The use of clinical data in electronic health records for machine-learning or data analytics depends on the conversion of free text into machine-readable codes. We have examined the feasibility of capturing the neurological examination as machine-readable codes based on UMLS Metathesaurus concepts. Methods We created a target ontology for capturing the neurological examination using 1100 concepts from the UMLS Metathesaurus. We created a dataset of 2386 test-phrases based on 419 published neurological cases. We then mapped the test-phrases to the target ontology. Results We were able to map all of the 2386 test-phrases to 601 unique UMLS concepts. A neurological examination ontology with 1100 concepts has sufficient breadth and depth of coverage to encode all of the neurologic concepts derived from the 419 test cases. Using only pre-coordinated concepts, component ontologies of the UMLS, such as HPO, SNOMED CT, and OMIM, do not have adequate depth and breadth of coverage to encode the complexity of the neurological examination. Conclusion An ontology based on a subset of UMLS has sufficient breadth and depth of coverage to convert deficits from the neurological examination into machine-readable codes using pre-coordinated concepts. The use of a small subset of UMLS concepts for a neurological examination ontology offers the advantage of improved manageability as well as the opportunity to curate the hierarchy and subsumption relationships. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |