Computation in the Learning System of Cephalopods

Autor: John Zachary Young
Rok vydání: 1991
Předmět:
Zdroj: The Biological Bulletin. 180:200-208
ISSN: 1939-8697
0006-3185
DOI: 10.2307/1542389
Popis: The memory mechanisms of cephalopods consist of a series of matrices of intersecting axes, which find associations between the signals of input events and their consequences. The tactile memory is distributed among eight such matrices, and there is also some suboesophageal learning capacity. The visual memory lies in the optic lobe and four matrices, with some re-exciting pathways. In both systems, damage to any part reduces proportionally the effectiveness of the whole memory. These matrices are somewhat like those in mammals, for instance those in the hippocampus. The first matrix in both visual and tactile systems receives signals of vision and taste, and its output serves to increase the tendency to attack or to take with the arms. The second matrix provides for the correlation of groups of signals on its neurons, which pass signals to the third matrix. Here large cells find clusters in the sets of signals. Their output re-excites those of the first lobe, unless pain occurs. In that case, this set of cells provides a record that ensures retreat. There is experimental evidence that these distributed memory systems allow for the identification of categories of visual and tactile inputs, for generalization, and for decision on appropriate behavior in the light of experience. The evidence suggests that learning in cephalopods is not localized to certain layers or "grandmother cells" but is distributed with high redundance in serial networks, with recurrent circuits.
Databáze: OpenAIRE