Characterizing Lane Changes via Digitized Infrastructure and Low-Cost GPS

Autor: Nagui M. Rouphail, Shams Tanvir, Alan F. Karr, Gyounghoon Chun, Ishtiak Ahmed
Rok vydání: 2019
Předmět:
Zdroj: Transportation Research Record: Journal of the Transportation Research Board, vol 2673, iss 8
ISSN: 2169-4052
0361-1981
Popis: With the expected increase in the availability of trajectory-level information from connected and autonomous vehicles, issues of lane changing behavior that were difficult to assess with traditional freeway detection systems can now begin to be addressed. This study presents the development and application of a lane change detection algorithm that uses trajectory data from a low-cost GPS-equipped fleet, supplemented with digitized lane markings. The proposed algorithm minimizes the effect of GPS errors by constraining the temporal duration and lateral displacement of a lane change detected using preliminary lane positioning. The algorithm was applied to 637 naturalistic trajectories traversing a long weaving segment and validated through a series of controlled lane change experiments. Analysis of naturalistic trajectory data revealed that ramp-to-freeway trips had the highest number of discretionary lane changes in excess of 1 lane change/vehicle. Overall, excessive lane change rates were highest between the two middle freeway lanes at 0.86 lane changes/vehicle. These results indicate that extreme lane changing behavior may significantly contribute to the peak-hour congestion at the site. The average lateral speed during lane change was 2.7 fps, consistent with the literature, with several freeway–freeway and ramp–ramp trajectories showing speeds up to 7.7 fps. All ramp-to-freeway vehicles executed their first mandatory lane change within 62.5% of the total weaving length, although other weaving lane changes were spread over the entire segment. These findings can be useful for implementing strategies to lessen abrupt and excessive lane changes through better lane pre-positioning.
Databáze: OpenAIRE