Zero forcing sets and the minimum rank of graphs

Autor: Rana Mikkelson, Sivaram K. Narayan, Dragoš Cvetković, Willem H. Haemers, Leslie Hogben, Olga Pryporova, Chris Godsil, Hein van der Holst, Sebastian M. Cioabă, Shaun M. Fallat, Francesco Barioli, Wasin So, Wayne Barrett, Kevin N. Vander Meulen, Amy Wangsness Wehe, Dragan Stevanović, Steve Butler, Irene Sciriha
Přispěvatelé: Stochastic Operations Research, Combinatorial Optimization 1
Jazyk: angličtina
Rok vydání: 2008
Předmět:
Zdroj: Linear Algebra and Its Applications, 428(7), 1628-1648. Elsevier
ISSN: 0024-3795
DOI: 10.1016/j.laa.2007.10.009
Popis: The minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for i≠j) is nonzero whenever {i,j} is an edge in G and is zero otherwise. This paper introduces a new graph parameter, Z(G), that is the minimum size of a zero forcing set of vertices and uses it to bound the minimum rank for numerous families of graphs, often enabling computation of the minimum rank.
Databáze: OpenAIRE