Surprising synergy of dual translation inhibition vs. Acinetobacter baumannii and other multidrug-resistant bacterial pathogens
Autor: | Ingrid Cornax, Hannah Tsunemoto, Victor Nizet, Michelle Holland, Bryan Hancock, George Sakoulas, Nicholas Dillon, Joe Pogliano |
---|---|
Rok vydání: | 2019 |
Předmět: |
Acinetobacter baumannii
0301 basic medicine Research paper Antibiotic resistance Antibiotics Drug Resistance Minocycline Azithromycin medicine.disease_cause Mice 0302 clinical medicine Drug Resistance Multiple Bacterial Medicine Lung Translation inhibition biology Bacterial Drug Synergism General Medicine Anti-Bacterial Agents 3. Good health Synergy Infectious Diseases 5.1 Pharmaceuticals 030220 oncology & carcinogenesis Pneumonia & Influenza Public Health and Health Services Drug Development of treatments and therapeutic interventions Infection Multiple Acinetobacter Infections medicine.drug medicine.drug_class Clinical Sciences Microbial Sensitivity Tests General Biochemistry Genetics and Molecular Biology Microbiology Dose-Response Relationship 03 medical and health sciences Minimum inhibitory concentration Animals Dose-Response Relationship Drug Animal business.industry Pseudomonas aeruginosa Prevention Bacterial cytological profiling Pneumonia Antibiotic therapy biology.organism_classification Multiple drug resistance Disease Models Animal Emerging Infectious Diseases Good Health and Well Being 030104 developmental biology Protein Biosynthesis Disease Models Antimicrobial Resistance business |
Zdroj: | EBioMedicine |
ISSN: | 2352-3964 |
DOI: | 10.1016/j.ebiom.2019.07.041 |
Popis: | Background Multidrug-resistant (MDR) Acinetobacter baumannii infections have high mortality rates and few treatment options. Synergistic drug combinations may improve clinical outcome and reduce further emergence of resistance in MDR pathogens. Here we show an unexpected potent synergy of two translation inhibitors against the pathogen: commonly prescribed macrolide antibiotic azithromycin (AZM), widely ignored as a treatment alternative for invasive Gram-negative pathogens, and minocycline, among the current standard-of-care agents used for A. baumannii. Methods Media-dependent activities of AZM and MIN were evaluated in minimum inhibitory concentration assays and kinetic killing curves, alone or in combination, both in standard bacteriologic media (cation-adjusted Mueller-Hinton Broth) and more physiologic tissue culture media (RPMI), with variations of bicarbonate as a physiologic buffer. Synergy was calculated by fractional inhibitory concentration index (FICI). Therapeutic benefit of combining AZM and MIN was tested in a murine model of A. baumannii pneumonia. AZM + MIN synergism was probed mechanistically by bacterial cytological profiling (BCP), a quantitative fluorescence microscopy technique that identifies disrupted bacterial cellular pathways on a single cell level, and real-time kinetic measurement of translation inhibition via quantitative luminescence. AZM + MIN synergism was further evaluated vs. other contemporary high priority MDR bacterial pathogens. Findings Although two translation inhibitors are not expected to synergize, each drug complemented kinetic deficiencies of the other, speeding the initiation and extending the duration of translation inhibition as verified by FICI, BCP and kinetic luminescence markers. In an MDR A. baumannii pneumonia model, AZM + MIN combination therapy decreased lung bacterial burden and enhanced survival rates. Synergy between AZM and MIN was also detected vs. MDR strains of Gram-negative Klebsiella pneumoniae and Pseudomonas aeruginosa, and the leading Gram-positive pathogen methicillin-resistant Staphylococcus aureus. Interpretation As both agents are FDA approved with excellent safety profiles, clinical investigation of AZM and MIN combination regimens may immediately be contemplated for optimal treatment of A. baumannii and other MDR bacterial infections in humans. Fund National Institutes of Health U01 AI124326 (JP, GS, VN) and U54 HD090259 (GS, VN). IC was supported by the UCSD Research Training Program for Veterinarians T32 OD017863. |
Databáze: | OpenAIRE |
Externí odkaz: |