Enhanced Ribozyme‐Catalyzed Recombination and Oligonucleotide Assembly in Peptide‐RNA Condensates
Autor: | Hannes Mutschler, Emilie Yeonwha Song, Kristian Le Vay, Basusree Ghosh, T-Y Dora Tang |
---|---|
Rok vydání: | 2021 |
Předmět: |
Coacervates
Oligonucleotides Peptide Cleavage (embryo) 010402 general chemistry 01 natural sciences Catalysis Ligases 03 medical and health sciences RNA Catalytic Ribozymes 030304 developmental biology chemistry.chemical_classification 0303 health sciences biology Oligonucleotide Chemistry Ribozyme RNA General Chemistry General Medicine Compartmentalization (psychology) 0104 chemical sciences 3. Good health Folding (chemistry) biology.protein Biophysics Biocatalysis RNA Cleavage Peptides |
Zdroj: | Angewandte Chemie International Edition |
ISSN: | 1521-3757 0044-8249 |
Popis: | The ability of RNA to catalyze RNA ligation is critical to its central role in many prebiotic model scenarios, in particular the copying of information during self-replication. Prebiotically plausible ribozymes formed from short oligonucleotides can catalyze reversible RNA cleavage and ligation reactions, but harsh conditions or unusual scenarios are often required to promote folding and drive the reaction equilibrium towards ligation. Here, we demonstrate that ribozyme activity is greatly enhanced by charge-mediated phase separation with poly-L-lysine, which shifts the reaction equilibrium from cleavage in solution to ligation in peptide-RNA coaggregates and coacervates. This compartmentalization enables robust isothermal RNA assembly over a broad range of conditions, which can be leveraged to assemble long and complex RNAs from short fragments under mild conditions in the absence of exogenous activation chemistry, bridging the gap between pools of short oligomers and functional RNAs. Angew. Chem., Int. Ed. Engl.;60(50) |
Databáze: | OpenAIRE |
Externí odkaz: |