Tractostorm: The what, why, and how of tractography dissection reproducibility

Autor: Maxime Chamberland, Silvio Sarubbo, Janice Hau, Felix C. Morency, Laurent Petit, Kristofer Pomiecko, Quentin Chenot, Ilyess Zemmoura, Chantal M. W. Tax, Maxime Descoteaux, Alessandro Daducci, Kelly Glavin, Muhamed Barakovic, Guillaume Theaud, François Rheault, Francesco Corrivetti, Chiara Maffei, Kesshi Jordan, Alessandro De Benedictis, Gabriel Girard, Eduardo Caverzasi, Nil Goyette, Franco Pestilli, Philippe Poulin, David Romascano, Sandip S. Panesar
Přispěvatelé: Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), Sherbrooke Connectivity Imaging Lab [Sherbrooke] (SCIL), Département d'informatique [Sherbrooke] (UdeS), Faculté des sciences [Sherbrooke] (UdeS), Université de Sherbrooke (UdeS)-Université de Sherbrooke (UdeS)-Faculté des sciences [Sherbrooke] (UdeS), Université de Sherbrooke (UdeS)-Université de Sherbrooke (UdeS), Department of Neuroscience and Neurorehabilitation, Neurosurgery Unit, Bambino Ges  u Children’s Hospital – IRCCS, 4 Piazza Sant’Onofrio, Roma, 00165, Italy, Department of Computer Science [Verona] (UNIVR | DI), Università degli studi di Verona = University of Verona (UNIVR), Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School [Boston] (HMS)-Massachusetts General Hospital [Boston], Cardiff University's Brain Research Imaging Centre [Cardiff] (CUBRIC), School of Psychology [Cardiff University], Cardiff University-Cardiff University, Signal Processing Laboratory [Lausanne] (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Department of Neurology (University of California : San Francisco), University of California [San Francisco] (UC San Francisco), University of California (UC)-University of California (UC), Imeka Solutions, Sherbrooke, Hôpital Lariboisière-Fernand-Widal [APHP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Department of Psychological and Brain Sciences, Indiana University, Imagerie et cerveau (iBrain - Inserm U1253 - UNIV Tours ), Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM), Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, Learning Research & Development Center (LRDC), University of Pittsburgh, Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Department of Neurosurgery [Stanford], Stanford Medicine, Stanford University-Stanford University, Department of Neurosciences, Division of Neurosurgery, 'S. Chiara' Hospital, Trento APSS – 9 Largo Medaglie D’Oro, Trento, 38122, Italy, Groupe d'imagerie neurofonctionnelle (GIN), Institut des Maladies Neurodégénératives [Bordeaux] (IMN), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Petit, Laurent, University of Verona (UNIVR), Massachusetts General Hospital [Boston]-Harvard Medical School [Boston] (HMS), University of California [San Francisco] (UCSF), University of California-University of California, Université de Tours-Institut National de la Santé et de la Recherche Médicale (INSERM), ISAE-SUPAERO, Université de Toulouse, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut des Maladies Neurodégénératives [Bordeaux] (IMN), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Standardization
Computer science
diffusion tractography
tractography
computer.software_genre
diffusion MRI
0302 clinical medicine
inter-rater
Segmentation
Research Articles
Observer Variation
Radiological and Ultrasound Technology
Dissection
05 social sciences
White matter
hippocampal segmentation
Bundle segmentation
White Matter
Reproducibility
intra-rater
3. Good health
Diffusion Tensor Imaging
inter‐rater
Neurology
manual segmentation
Anatomy
adni harmonized protocol
bundle segmentation
Tractography
fractional anisotropy
Research Article
Intra‐rater
Machine learning
050105 experimental psychology
Diffusion MRI
03 medical and health sciences
fiber tracking
Fractional anisotropy
Humans
0501 psychology and cognitive sciences
Radiology
Nuclear Medicine and imaging

intra‐rater
reproducibility
Protocol (science)
multi-atlas segmentation
business.industry
[SCCO.NEUR]Cognitive science/Neuroscience
Inter‐rater
[SCCO.NEUR] Cognitive science/Neuroscience
Neurosciences
Reproducibility of Results
cross-correlation
white-matter pathways
Inter-rater reliability
Diffusion Magnetic Resonance Imaging
Bundle
tensor imaging tractography
Anisotropy
Neurology (clinical)
Artificial intelligence
business
computer
030217 neurology & neurosurgery
Zdroj: Human Brain Mapping
Human Brain Mapping, 2020, 41 (7), pp.1859-1874. ⟨10.1002/hbm.24917⟩
Human Brain Mapping, Wiley, 2020, 41 (7), pp.1859-1874. ⟨10.1002/hbm.24917⟩
ISSN: 1065-9471
1097-0193
DOI: 10.1002/hbm.24917⟩
Popis: Investigative studies of white matter (WM) brain structures using diffusion MRI (dMRI) tractography frequently require manual WM bundle segmentation, often called “virtual dissection.” Human errors and personal decisions make these manual segmentations hard to reproduce, which have not yet been quantified by the dMRI community. It is our opinion that if the field of dMRI tractography wants to be taken seriously as a widespread clinical tool, it is imperative to harmonize WM bundle segmentations and develop protocols aimed to be used in clinical settings. The EADC‐ADNI Harmonized Hippocampal Protocol achieved such standardization through a series of steps that must be reproduced for every WM bundle. This article is an observation of the problematic. A specific bundle segmentation protocol was used in order to provide a real‐life example, but the contribution of this article is to discuss the need for reproducibility and standardized protocol, as for any measurement tool. This study required the participation of 11 experts and 13 nonexperts in neuroanatomy and “virtual dissection” across various laboratories and hospitals. Intra‐rater agreement (Dice score) was approximately 0.77, while inter‐rater was approximately 0.65. The protocol provided to participants was not necessarily optimal, but its design mimics, in essence, what will be required in future protocols. Reporting tractometry results such as average fractional anisotropy, volume or streamline count of a particular bundle without a sufficient reproducibility score could make the analysis and interpretations more difficult. Coordinated efforts by the diffusion MRI tractography community are needed to quantify and account for reproducibility of WM bundle extraction protocols in this era of open and collaborative science.
Databáze: OpenAIRE