Comment on 'Large Bottleneck Size in Cauliflower Mosaic Virus Populations during Host Plant Colonization' by Monsion et al. (2008)

Autor: Yannis Michalakis, Gaël Thébaud
Přispěvatelé: Biologie et Génétique des Interactions Plante-Parasite (UMR BGPI), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Evolution Théorique et Expérimentale (MIVEGEC-ETE), Perturbations, Evolution, Virulence (PEV), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), Thébaud, Gael
Jazyk: angličtina
Rok vydání: 2016
Předmět:
0301 basic medicine
Leaves
Drift
viruses
Plant Biology
Plant Science
Expected value
Poisson distribution
Prime (order theory)
Caulimovirus
Vegetables
bottlenecks
pathologie végétale
lcsh:QH301-705.5
ComputingMilieux_MISCELLANEOUS
Mathematics
Vegetal Biology
Plant Anatomy
Brassica rapa
food and beverages
Agriculture
Genomics
Plants
Cauliflower
Virology/Virus Evolution and Symbiosis
Evolutionary Biology/Microbial Evolution and Genomics
Physical Sciences
Host-Pathogen Interactions
[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology
symbols
Research Article
lcsh:Immunologic diseases. Allergy
Phytopathology and phytopharmacy
colonisation
Immunology
Plant Pathogens
Crops
Brassica
plante hôte
Microbiology
Formal Comment
Plant Viral Pathogens
Viral Evolution
Bottleneck
camv
Evolution
Molecular

Combinatorics
03 medical and health sciences
symbols.namesake
Virology
Genetics
MOI
Molecular Biology
Plant Diseases
Evolutionary Biology
[SDV.GEN.GPO]Life Sciences [q-bio]/Genetics/Populations and Evolution [q-bio.PE]
fungi
Organisms
Biology and Life Sciences
Computational Biology
Random Variables
Microbiology/Plant-Biotic Interactions
Plant Pathology
Virology/Host Invasion and Cell Entry
Probability Theory
Genome Analysis
Genomic Libraries
Phytopathologie et phytopharmacie
maladie des plantes
Organismal Evolution
Plant Leaves
Binomial distribution
030104 developmental biology
Distribution (mathematics)
lcsh:Biology (General)
Microbial Evolution
Interval (graph theory)
Parasitology
lcsh:RC581-607
Random variable
Biologie végétale
Crop Science
Zdroj: PLoS Pathogens
PLoS Pathogens, Public Library of Science, 2016, 12 (4), pp.e1005512. ⟨10.1371/journal.ppat.1005512⟩
PLoS Pathogens, 2016, 12 (4), pp.e1005512. ⟨10.1371/journal.ppat.1005512⟩
PLoS Pathogens, Vol 12, Iss 4, p e1005512 (2016)
Plos Pathogens 4 (12), e1005512. (2016)
ISSN: 1553-7366
1553-7374
Popis: The effective size of populations (Ne) determines whether selection or genetic drift is the predominant force shaping their genetic structure and evolution. Despite their high mutation rate and rapid evolution, this parameter is poorly documented experimentally in viruses, particularly plant viruses. All available studies, however, have demonstrated the existence of huge within-host demographic fluctuations, drastically reducing Ne upon systemic invasion of different organs and tissues. Notably, extreme bottlenecks have been detected at the stage of systemic leaf colonization in all plant viral species investigated so far, sustaining the general idea that some unknown obstacle(s) imposes a barrier on the development of all plant viruses. This idea has important implications, as it appoints genetic drift as a constant major force in plant virus evolution. By co-inoculating several genetic variants of Cauliflower mosaic virus into a large number of replicate host plants, and by monitoring their relative frequency within the viral population over the course of the host systemic infection, only minute stochastic variations were detected. This allowed the estimation of the CaMV Ne during colonization of successive leaves at several hundreds of viral genomes, a value about 100-fold higher than that reported for any other plant virus investigated so far, and indicated the very limited role played by genetic drift during plant systemic infection by this virus. These results suggest that the barriers that generate bottlenecks in some plant virus species might well not exist, or can be surmounted by other viruses, implying that severe bottlenecks during host colonization do not necessarily apply to all plant-infecting viruses.
Author Summary Whether selection or stochastic genetic drift is the major force driving the evolution of a virus depends largely on the size of the viral population, with the former being predominant in large populations and the latter taking over when population sizes are transiently or durably reduced. This question has been intensively debated in both plant and animal viruses, as demographic fluctuations throughout viral life cycles are poorly understood. In plant viruses, an extremely small population size—down to a few founder genome units colonizing each leaf—has been formally estimated in two instances, and all other virus species investigated so far have consistently been shown to undergo extreme demographic bottlenecks during systemic invasion of their host. This situation conveys the general idea that all viruses are confronted with “universal barriers” in plants, imposing repeated transient decreases in their population size, thus making genetic drift a major constant driver of their evolution. Here, using the example of Cauliflower mosaic virus, we mitigate this general idea by showing that at least one virus species can overcome such putative limiting barriers and massively invade leaves with hundreds to thousands of founding genome units.
Databáze: OpenAIRE