Comment on 'Large Bottleneck Size in Cauliflower Mosaic Virus Populations during Host Plant Colonization' by Monsion et al. (2008)
Autor: | Yannis Michalakis, Gaël Thébaud |
---|---|
Přispěvatelé: | Biologie et Génétique des Interactions Plante-Parasite (UMR BGPI), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Institut de Recherche pour le Développement (IRD [France-Sud])-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Evolution Théorique et Expérimentale (MIVEGEC-ETE), Perturbations, Evolution, Virulence (PEV), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), Thébaud, Gael |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
Leaves Drift viruses Plant Biology Plant Science Expected value Poisson distribution Prime (order theory) Caulimovirus Vegetables bottlenecks pathologie végétale lcsh:QH301-705.5 ComputingMilieux_MISCELLANEOUS Mathematics Vegetal Biology Plant Anatomy Brassica rapa food and beverages Agriculture Genomics Plants Cauliflower Virology/Virus Evolution and Symbiosis Evolutionary Biology/Microbial Evolution and Genomics Physical Sciences Host-Pathogen Interactions [SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology symbols Research Article lcsh:Immunologic diseases. Allergy Phytopathology and phytopharmacy colonisation Immunology Plant Pathogens Crops Brassica plante hôte Microbiology Formal Comment Plant Viral Pathogens Viral Evolution Bottleneck camv Evolution Molecular Combinatorics 03 medical and health sciences symbols.namesake Virology Genetics MOI Molecular Biology Plant Diseases Evolutionary Biology [SDV.GEN.GPO]Life Sciences [q-bio]/Genetics/Populations and Evolution [q-bio.PE] fungi Organisms Biology and Life Sciences Computational Biology Random Variables Microbiology/Plant-Biotic Interactions Plant Pathology Virology/Host Invasion and Cell Entry Probability Theory Genome Analysis Genomic Libraries Phytopathologie et phytopharmacie maladie des plantes Organismal Evolution Plant Leaves Binomial distribution 030104 developmental biology Distribution (mathematics) lcsh:Biology (General) Microbial Evolution Interval (graph theory) Parasitology lcsh:RC581-607 Random variable Biologie végétale Crop Science |
Zdroj: | PLoS Pathogens PLoS Pathogens, Public Library of Science, 2016, 12 (4), pp.e1005512. ⟨10.1371/journal.ppat.1005512⟩ PLoS Pathogens, 2016, 12 (4), pp.e1005512. ⟨10.1371/journal.ppat.1005512⟩ PLoS Pathogens, Vol 12, Iss 4, p e1005512 (2016) Plos Pathogens 4 (12), e1005512. (2016) |
ISSN: | 1553-7366 1553-7374 |
Popis: | The effective size of populations (Ne) determines whether selection or genetic drift is the predominant force shaping their genetic structure and evolution. Despite their high mutation rate and rapid evolution, this parameter is poorly documented experimentally in viruses, particularly plant viruses. All available studies, however, have demonstrated the existence of huge within-host demographic fluctuations, drastically reducing Ne upon systemic invasion of different organs and tissues. Notably, extreme bottlenecks have been detected at the stage of systemic leaf colonization in all plant viral species investigated so far, sustaining the general idea that some unknown obstacle(s) imposes a barrier on the development of all plant viruses. This idea has important implications, as it appoints genetic drift as a constant major force in plant virus evolution. By co-inoculating several genetic variants of Cauliflower mosaic virus into a large number of replicate host plants, and by monitoring their relative frequency within the viral population over the course of the host systemic infection, only minute stochastic variations were detected. This allowed the estimation of the CaMV Ne during colonization of successive leaves at several hundreds of viral genomes, a value about 100-fold higher than that reported for any other plant virus investigated so far, and indicated the very limited role played by genetic drift during plant systemic infection by this virus. These results suggest that the barriers that generate bottlenecks in some plant virus species might well not exist, or can be surmounted by other viruses, implying that severe bottlenecks during host colonization do not necessarily apply to all plant-infecting viruses. Author Summary Whether selection or stochastic genetic drift is the major force driving the evolution of a virus depends largely on the size of the viral population, with the former being predominant in large populations and the latter taking over when population sizes are transiently or durably reduced. This question has been intensively debated in both plant and animal viruses, as demographic fluctuations throughout viral life cycles are poorly understood. In plant viruses, an extremely small population size—down to a few founder genome units colonizing each leaf—has been formally estimated in two instances, and all other virus species investigated so far have consistently been shown to undergo extreme demographic bottlenecks during systemic invasion of their host. This situation conveys the general idea that all viruses are confronted with “universal barriers” in plants, imposing repeated transient decreases in their population size, thus making genetic drift a major constant driver of their evolution. Here, using the example of Cauliflower mosaic virus, we mitigate this general idea by showing that at least one virus species can overcome such putative limiting barriers and massively invade leaves with hundreds to thousands of founding genome units. |
Databáze: | OpenAIRE |
Externí odkaz: |