Angular momenta of relative equilibrium motions and real moment map geometry

Autor: Gert Heckman, Lei Zhao
Rok vydání: 2016
Předmět:
Zdroj: Inventiones Mathematicae, 205, 3, pp. 671-691
Inventiones Mathematicae, 205, 671-691
ISSN: 1432-1297
0020-9910
DOI: 10.1007/s00222-015-0644-2
Popis: Chenciner and Jimenez Perez showed that the range of the spectra of the angular momenta of all the rigid motions of a fixed central configuration in a general Euclidean space form a convex polytope. In this note we explain how this result follows from a general real convexity theorem of O Shea and Sjamaar in symplectic geometry. Finally, we provide a representation theoretic description of the pushforward of the normalized measure under the real moment map for Riemannian symmetric pairs.
Comment: 23 pages
Databáze: OpenAIRE