Angular momenta of relative equilibrium motions and real moment map geometry
Autor: | Gert Heckman, Lei Zhao |
---|---|
Rok vydání: | 2016 |
Předmět: |
General Mathematics
Geometry Dynamical Systems (math.DS) 01 natural sciences Measure (mathematics) Spectral line Convexity Convex polytope FOS: Mathematics Pushforward (differential) 70F10 53D20 43A85 43A90 Mathematics - Dynamical Systems ddc:510 Representation Theory (math.RT) 0101 mathematics Moment map Mathematical Physics Mathematics Euclidean space 010102 general mathematics 010101 applied mathematics Range (mathematics) Mathematics - Symplectic Geometry Symplectic Geometry (math.SG) Mathematics - Representation Theory |
Zdroj: | Inventiones Mathematicae, 205, 3, pp. 671-691 Inventiones Mathematicae, 205, 671-691 |
ISSN: | 1432-1297 0020-9910 |
DOI: | 10.1007/s00222-015-0644-2 |
Popis: | Chenciner and Jimenez Perez showed that the range of the spectra of the angular momenta of all the rigid motions of a fixed central configuration in a general Euclidean space form a convex polytope. In this note we explain how this result follows from a general real convexity theorem of O Shea and Sjamaar in symplectic geometry. Finally, we provide a representation theoretic description of the pushforward of the normalized measure under the real moment map for Riemannian symmetric pairs. Comment: 23 pages |
Databáze: | OpenAIRE |
Externí odkaz: |