Schubert Derivations on the Infinite Wedge Power
Autor: | Parham Salehyan, Letterio Gatto |
---|---|
Přispěvatelé: | Politecnico di Torino, Universidade Estadual Paulista (Unesp) |
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
infinite wedge powers Bosonic and Fermionic Fock spaces General Mathematics Schubert calculus FOS: Physical sciences Fock space Mathematics - Algebraic Geometry Grassmannian Mathematics::Quantum Algebra Lie algebra FOS: Mathematics 14M15 15A75 05E05 17B69 Mathematics - Combinatorics Representation Theory (math.RT) Mathematics::Representation Theory Exterior algebra Algebraic Geometry (math.AG) Mathematical Physics Mathematics Vertex operators Hasse–Schmidt derivations on exterior algebras Bosonic vertex representation of Date Jimbo Kashiwara Miwa Schubert derivations on infinite wedge powers Hasse Schmidt derivations on exterior algebras Mathematical Physics (math-ph) Cohomology Free abelian group Bosonic vertex representation of Date–Jimbo–Kashiwara–Miwa Irreducible representation Schubert derivations on Combinatorics (math.CO) Mathematics - Representation Theory |
Zdroj: | Scopus Repositório Institucional da UNESP Universidade Estadual Paulista (UNESP) instacron:UNESP |
DOI: | 10.48550/arxiv.1901.06853 |
Popis: | The {\em Schubert derivation} is a distinguished Hasse-Schmidt derivation on the exterior algebra of a free abelian group, encoding the formalism of Schubert calculus for all Grassmannians at once. The purpose of this paper is to extend the Schubert derivation to the infinite exterior power of a free ${\mathbb Z}$-module of infinite rank (fermionic Fock space). Classical vertex operators naturally arise from the {\em integration by parts formula}, that also recovers the generating function occurring in the {\em bosonic vertex representation} of the Lie algebra $gl_\infty({\mathbb Z})$, due to Date, Jimbo, Kashiwara and Miwa (DJKM). In the present framework, the DJKM result will be interpreted as a limit case of the following general observation: the singular cohomology of the complex Grassmannian $G(r,n)$ is an irreducible representation of the Lie algebra of $n\times n$ square matrices.} Comment: 23 pages, no figures, comments welcome. Few typos corrected and updated reference list |
Databáze: | OpenAIRE |
Externí odkaz: |