New general maximum entropy model for flow through porous media

Autor: Podalyro Amaral de Souza, Fábio Cunha Lofrano, Dione Mari Morita, Fernando Akira Kurokawa
Rok vydání: 2020
Předmět:
Zdroj: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Popis: New experimental and numerical techniques constitute the major recent advancements in the study of flow through porous media. However, a model that duly links the micro- and macroscales of this phenomenon is still lacking. Therefore, the present work describes a new, analytical model suitable for both Darcian and post-Darcian flow. Unlike its predecessors, most of which are based on empirical assessments or on some derivation of the Navier–Stokes equations, the presented model employed the principle of maximum entropy, along with a reduced number of premises. Nevertheless, it is compatible with classic expressions, such as Darcy’s and Forchheimer’s laws. Also, great adherence to previously published experimental results was observed. Moreover, the developed model allows for the delimitation of Darcian and post-Darcian regimes. It enabled the determination of a probabilistic distribution function of flow velocities within the pore space. Further, it bestowed richer interpretations of the physical meanings of principal flow parameters. Finally, through a new quantity called the entropy parameter, the proposed model may serve as a bridge between experimental and numerical findings both at the micro- and macroscales. Therefore, the present research yielded an analytical, entropy-based model for flow through porous media that is sufficiently general and robust to be applied in several fields of knowledge.
Databáze: OpenAIRE
Pro tento záznam nejsou dostupné žádné jednotky.