GTI at SemEval-2016 task 4: Training a naive bayes classifier using features of an unsupervised system

Autor: Milagros Fernández-Gavilanes, Enrique Costa-Montenegro, Francisco J. González-Castaño, Tamara Álvarez-López, Jonathan Juncal-Martínez
Předmět:
Zdroj: ResearcherID
SemEval@NAACL-HLT
Scopus-Elsevier
Milagros Fernández-Gavilanes
Popis: This paper presents the approach of the GTI Research Group to SemEval-2016 task 4 on Sentiment Analysis in Twitter, or more specifically, subtasks A (Message Polarity Classification), B (Tweet classification according to a two-point scale) and D (Tweet quantification according to a two-point scale). We followed a supervised approach based on the extraction of features by a dependency parsing-based approach using a sentiment lexicon and Natural Language Processing techniques.
Databáze: OpenAIRE