The KK-theory of amalgamated free products
Autor: | Emmanuel Germain, Pierre Fima |
---|---|
Přispěvatelé: | Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques Nicolas Oresme (LMNO), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Vertex (graph theory)
Exact sequence Pure mathematics Mathematics::Operator Algebras Direct sum General Mathematics Unital 010102 general mathematics [MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA] Mathematics - Operator Algebras KK-theory K-Theory and Homology (math.KT) Conditional expectation 01 natural sciences Free product 0103 physical sciences Mathematics - K-Theory and Homology FOS: Mathematics [MATH.MATH-KT]Mathematics [math]/K-Theory and Homology [math.KT] 010307 mathematical physics 0101 mathematics Operator Algebras (math.OA) ComputingMilieux_MISCELLANEOUS Mathematics |
Zdroj: | Advances in Mathematics Advances in Mathematics, Elsevier, 2020, 369, pp.107174. ⟨10.1016/j.aim.2020.107174⟩ |
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2020.107174⟩ |
Popis: | We prove a long exact sequence in KK-theory for both full and reduced amalgamated free products in the presence of conditional expectations. In the course of the proof, we established the KK-equivalence between the full amalgamated free product of two unital C*-algebras and a newly defined reduced amalgamated free product that is valid even for non GNS-faithful conditional expectations. Our results unify, simplify and generalize all the previous results obtained before by Cuntz, Germain and Thomsen. V.3, the paper has been splitted into two papers, this is the first part on amalgamated free products |
Databáze: | OpenAIRE |
Externí odkaz: |