Physiological effects of vasopressin and atrial natriuretic peptide in the collecting duct

Autor: Takeaki Inoue, Kimio Tomita, Hiroshi Nonoguchi
Rok vydání: 2001
Předmět:
Zdroj: Cardiovascular Research. 51:470-480
ISSN: 0008-6363
Popis: Vasopressin plays a primary role in the concentration of urine to maintain body fluid homeostasis. The collecting duct as well as thick ascending limb is a major target site of vasopressin. The antidiuretic action of vasopressin is mediated by the V2 receptor in the basolateral membrane of principal cells in the collecting ducts. The binding of vasopressin to V2 receptors causes an activation of adenylate cyclase and a synthesis of cAMP. Vasopressin regulates water and ion transport through V2 receptor-mediated ion channels and transporters. In contrast, the V1a receptor mainly in the luminal membrane of distal nephron regulates basolateral V2 receptor-mediated action with regard to water and ion transport through the activation of G(q/11) and phosphoinositide turnover. Guanylate cyclase forms three types of ANP receptors, although NPR-A and B (GC-A and B) are biologically active and related to the synthesis of cGMP. Urodilatin, synthesized by the kidney, causes natriuresis by binding to GC-A in the collecting ducts. ANP causes diuresis and natriuresis, at least in part by inhibiting the V2 receptor-mediated action of AVP in the collecting ducts. The site of interaction of ANP and AVP is post cAMP synthesis, at least in the collecting ducts. The roles of AVP and ANP under pathophysiological conditions have been reported.
Databáze: OpenAIRE