FTIR Kinetic, Product, and Modeling Study of the OH-Initiated Oxidation of 1-Butanol in Air

Autor: Ian Barnes, Fabrizia Cavalli, K. H. Becker, Harald Geiger
Rok vydání: 2002
Předmět:
Zdroj: Environmental Science & Technology. 36:1263-1270
ISSN: 1520-5851
0013-936X
DOI: 10.1021/es010220s
Popis: A kinetic and product study was performed on the reaction of OH radicals with 1-butanol in a 480 L indoor photoreactor and also in the EUPHORE outdoor smog chamber in Valencia, Spain. Long path in situ FTIR spectroscopy and gas chromatography with photoionization detection were used to analyze reactants and products. Using a kinetic relative rate technique, a rate coefficient of k(OH + 1-butanol) = (8.28 +/- 0.85) x 10(-12) cm3 s(-1) was measured in 740 Torr synthetic air at 298 +/- 2 K. The reaction products observed and their fractional molar yields were (in percent) butanal (51.8 +/- 7.1), propanal (23.4 +/- 3.5), ethanal (12.7 +/- 2.2), and formaldehyde (43.4 +/- 2.4). In addition, the results support the probable formation of 4-hydroxy-2-butanone. Propanal, ethanal, and formaldehyde could also be formed in secondary reactions of some of the primary aldehydic products. However, under the conditions employed in the experiments, the contribution from secondary reactions is very minor. On the basis of the product studies, a detailed atmospheric degradation mechanism was constructed and tested against experimental data by chemical box model calculations. Measured and simulated concentration-time profiles for selected reactants were in excellent agreement.
Databáze: OpenAIRE