Characterization and biocompatibility of epoxy-crosslinked dermal sheep collagens

Autor: van Wachem, P.B., Zeeman, R., Dijkstra, P.J., Feijen, J., Hendriks, Maria A., Hendriks, M., Cahalan, P.T., van Luyn, M.J.A.
Přispěvatelé: Restoring Organ Function by Means of Regenerative Medicine (REGENERATE), Faculty of Science and Technology, Biomaterials Science and Technology
Jazyk: angličtina
Rok vydání: 1999
Předmět:
Zdroj: Journal of Biomedical Materials Research, 47(2), 270-277. Wiley
Journal of biomedical materials research, 1999(47), 270-277. Wiley
ISSN: 0021-9304
DOI: 10.1002/(sici)1097-4636(199911)47:2<270::aid-jbm18>3.0.co;2-d
Popis: Dermal sheep collagen (DSC), which was crosslinked with 1,4-butanediol diglycidyl ether (BD) by using four different conditions, was characterized and its biocompatibility was evaluated after subcutaneous implantation in rats. Crosslinking at pH 9.0 (BD90) or with successive epoxy and carbodiimide steps (BD45EN) resulted in a large increase in the shrinkage temperature (T-s) in combination with a clear reduction in amines. Crosslinking at pH 4.5 (BD45) increased the T-s of the material but hardly reduced the number of amines. Acylation (BD45HAc) showed the largest reduction in amines in combination with the lowest T-s. An evaluation of the implants showed that BD45, BD90, and BD45EN were biocompatible. A high influx of polymorphonuclear cells and macrophages was observed for BD45HAc, but this subsided at day 5. At week 6 the BD45 had completely degraded and BD45HAc was remarkably reduced in size, while BD45EN showed a clear size reduction of the outer DSC bundles; BD90 showed none of these features. This agreed with the observed degree of macrophage accumulation and giant cell formation. None of the materials calcified. For the purpose of soft tissue replacement, BD90 was defined as the material of choice because it combined biocompatibility, low cellular ingrowth, low biodegradation, and the absence of calcification with fibroblast ingrowth and new collagen formation. (C) 1999 John Wiley & Sons, Inc.
Databáze: OpenAIRE