Diluted conventional media improve the microbial cultivability from aquarium seawater
Autor: | Jiazhen Guo, Jie Huang, Qian Yang, Jing Sun |
---|---|
Rok vydání: | 2019 |
Předmět: |
DNA
Bacterial food.ingredient Microorganism Applied Microbiology and Biotechnology Microbiology 03 medical and health sciences food Nutrient Aquaculture RNA Ribosomal 16S Agar Seawater Food science Phylogeny Vibrio 030304 developmental biology 0303 health sciences Bacteria biology 030306 microbiology business.industry General Medicine 16S ribosomal RNA biology.organism_classification Microbial Physiology Culture Media business |
Zdroj: | Journal of Microbiology. 57:759-768 |
ISSN: | 1976-3794 1225-8873 |
Popis: | The cultivation of microbial species remains a primary challenge in microbiology and obtaining pure cultures is essential for the study of microbial physiology and function. When isolating microorganisms from aquaculture environments, Vibrio are the most dominate isolates on the media that are commonly used. In order to expand our ability to study microbial species, an easy-operation and low-cost medium that can reduce the interference of Vibrio strains and increase the cultivability of other bacteria is urgently needed. We compared viable cell counts on conventional media (CM; including Marine Agar 2216 and LB media) and diluted media (DM; including 1/10-Marine Agar 2216, 1/10-LB). We also assessed the diversity of cultivable microorganisms under high and low nutrient conditions by a plate-wash strategy coupled with high-throughput sequencing of the V4 hypervariable region of the 16S rRNA gene. The results show that microbial communities from DM, especially 1/10-Marine Agar 2216, are more diverse than those obtained from CM. Vibrio isolates were reduced on DM. PICRUSt analysis revealed that nutrient composition is a significant contributor to the diversity and function of the cultivable microbial communities. Bacteria grown on CM possess more pathogenic characteristics, whereas DM favors the growth of bacteria that have multiple metabolic functions. Collectively, our data provide strong evidence that dilution of CM influences the cultivability of bacteria from aquaculture seawater. It also supports that DM can expand the range of microbial species that can be cultivated. This study also provides insights for media design in microbial cultivation from aquaculture systems. |
Databáze: | OpenAIRE |
Externí odkaz: |