Conjugacies of model sets

Autor: Lorenzo Sadun, Johannes Kellendonk
Přispěvatelé: Probabilités, statistique, physique mathématique (PSPM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics and Statistics [Texas Tech], Texas Tech University [Lubbock] (TTU)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Discrete and Continuous Dynamical Systems-Series A
Discrete and Continuous Dynamical Systems-Series A, American Institute of Mathematical Sciences, 2017, 37 (7), pp.3805-3830. ⟨10.3934/dcds.2017161⟩
ISSN: 1078-0947
DOI: 10.3934/dcds.2017161⟩
Popis: Let $M$ be a model set meeting two simple conditions: (1) the internal space $H$ is a product of $R^n$ and a finite group, and (2) the window $W$ is a finite union of disjoint polyhedra. Then any point pattern with finite local complexity (FLC) that is topologically conjugate to $M$ is mutually locally derivable (MLD) to a model set $M'$ that has the same internal group and window as $M$, but has a different projection from $H \times R^d$ to $R^d$. In cohomological terms, this means that the group $H^1_{an}(M,R)$ of asymptotically negligible classes has dimension $n$. We also exhibit a counterexample when the second hypothesis is removed, constructing two topologically conjugate FLC Delone sets, one a model set and the other not even a Meyer set.
Updated to the published version
Databáze: OpenAIRE