Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6

Autor: Guangwei Wang, Shancai Wang, Wenhua Song, Qi Wang, Man Li, Zhengtai Liu, Zhiping Yin, Rui Lou, Zhonghao Liu, Yaobo Huang, Hechang Lei, Zhihong Yuan
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Nature Communications, Vol 12, Iss 1, Pp 1-8 (2021)
ISSN: 2041-1723
Popis: Kagome-lattices of 3d-transition metals hosting Weyl/Dirac fermions and topological flat bands exhibit non-trivial topological characters and novel quantum phases, such as the anomalous Hall effect and fractional quantum Hall effect. With consideration of spin–orbit coupling and electron correlation, several instabilities could be induced. The typical characters of the electronic structure of a kagome lattice, i.e., the saddle point, Dirac-cone, and flat band, around the Fermi energy (EF) remain elusive in magnetic kagome materials. We present the experimental observation of the complete features in ferromagnetic kagome layers of YMn6Sn6 helically coupled along the c-axis, by using angle-resolved photoemission spectroscopy and band structure calculations. We demonstrate a Dirac dispersion near EF, which is predicted by spin-polarized theoretical calculations, carries an intrinsic Berry curvature and contributes to the anomalous Hall effect in transport measurements. In addition, a flat band and a saddle point with a high density of states near EF are observed. These multi-sets of kagome features are of orbital-selective origin and could cause multi-orbital magnetism. The Dirac fermion, flat band and saddle point in the vicinity of EF open an opportunity in manipulating the topological properties in magnetic materials.
Databáze: OpenAIRE