Optimal Price and Lot Size for an EOQ Model with Full Backordering under Power Price and Time Dependent Demand
Autor: | Jaime Febles-Acosta, Joaquín Sicilia, Luis A. San-José, Manuel González-de-la-Rosa |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
TheoryofComputation_MISCELLANEOUS
Mathematical optimization Profit (accounting) Production control Computer science General Mathematics lot sizing Demand curve profit maximization Productos comerciales Computer Science (miscellaneous) QA1-939 Sensitivity (control systems) Power function Modelos matemáticos Engineering (miscellaneous) Inventory control Profit maximization Commerce Sizing Power (physics) EOQ inventory model Gestión de existencias optimal pricing Profit Economic order quantity Mathematics shortages |
Zdroj: | Mathematics, Vol 9, Iss 1848, p 1848 (2021) Mathematics Volume 9 Issue 16 |
ISSN: | 2227-7390 |
Popis: | Producción Científica In this paper, we address an inventory system where the demand rate multiplicatively combines the effects of time and selling price. It is assumed that the demand rate is the product of two power functions, one depending on the selling price and the other on the time elapsed since the last inventory replenishment. Shortages are allowed and fully backlogged. The aim is to obtain the lot sizing, the inventory cycle and the unit selling price that maximize the profit per unit time. To achieve this, two efficient algorithms are proposed to obtain the optimal solution to the inventory problem for all possible parameter values of the system. We solve several numerical examples to illustrate the theoretical results and the solution methodology. We also develop a numerical sensitivity analysis of the optimal inventory policy and the maximum profit with respect to the parameters of the demand function. Ministerio de Ciencia, Innovación y Universidades y Fondo Europeo de Desarrollo Regional (FEDER) - (Project MTM2017-84150-P) |
Databáze: | OpenAIRE |
Externí odkaz: |