A methodology for modelling and retrieving satellite images basing on spatial knowledge: application to natural risks

Autor: Basel Solaiman, Wassim Messaoudi, Henda Ben Ghezala, Imed Riadh Farah
Přispěvatelé: Département Image et Traitement Information (ITI), Université européenne de Bretagne - European University of Brittany (UEB)-Télécom Bretagne-Institut Mines-Télécom [Paris] (IMT), Laboratoire de recherche en Génie Logiciel, Applications distribuées, Systèmes décisionnels et Imagerie intelligente [Manouba] (RIADI), École Nationale des Sciences de l'Informatique [Manouba] (ENSI), Université de la Manouba [Tunisie] (UMA)-Université de la Manouba [Tunisie] (UMA)
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: ICGIP 2011: International Conference on Graphic and Image Processing
ICGIP 2011: International Conference on Graphic and Image Processing, Dec 2011, Cairo, Egypt. ⟨10.1117/12.913473⟩
DOI: 10.1117/12.913473⟩
Popis: International audience; In this paper, we present a methodology for modelling and retrieving satellite images basing on their spatial knowledge. The main idea of our approach is that the use of spatial knowledge, reasoning and inference technique, can contribute to deduce the susceptibility of the scene at natural risks (erosion, flooding, fires, etc.). Our methodology takes in input a set of multi-sensor images representing a scene. It contains four modules: (1) Modelling of the scene, (2) fusion of image annotations, (3) similar case retrieval, and (4) reasoning and interpretation. The first module generates annotations which represents the semantic content of the satellite scene. The second module allows merging image annotations to have faithful information to the reality. The third module attempts to find similar cases to those of the annotated query to take advantage of cases, situations and past problems. The fourth module allows deducting the susceptibility of the image in a given natural phenomenon (Erosion, flooding, fires), basing on inferences on knowledge of domain (Ontology, knowledge of expert, knowledge of natural phenomena, etc.) and the result of the previous phases.
Databáze: OpenAIRE