A three-dimensional printed customized bolus: adapting to the shape of the outer ear
Autor: | Jose Antonio Rivas, Eleonor Rivin del Campo, Diego Mesta Ortega, Montserrat Baeza, Jose Luis Lopez Guerra, María de Los Ángeles Flores Carrión, Florencio Javier Luis Simon, Gorka Gomez, Juan Carlos Rodríguez Mateos, Tomas Gómez-Cía |
---|---|
Přispěvatelé: | Biomedicine Institute of Sevilla [Seville, Spain], University of Sevilla, Hospital Juan Ramón Jiménez, Service d'oncologie-radiothérapie [CHU Tenon], CHU Tenon [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP) |
Rok vydání: | 2021 |
Předmět: |
Scanner
Three-dimensional printing Materials science medicine.diagnostic_test integumentary system High density Computed tomography [SDV.CAN]Life Sciences [q-bio]/Cancer Imaging phantom Bolus Radiation therapy 03 medical and health sciences Auricular skin 0302 clinical medicine medicine.anatomical_structure Bolus (medicine) Oncology 030220 oncology & carcinogenesis Maximum dose Outer ear medicine Radiology Nuclear Medicine and imaging Biomedical engineering Homogeneity index Research Paper |
Zdroj: | Digital.CSIC. Repositorio Institucional del CSIC instname Rep Pract Oncol Radiother Reports of Practical Oncology & Radiotherapy Reports of Practical Oncology & Radiotherapy, Elsevier, 2021, 26 (2), pp.211-217. ⟨10.5603/rpor.a2021.0030⟩ |
ISSN: | 1507-1367 2083-4640 |
Popis: | [Background] he skin-sparing effect of megavoltage-photon beams in radiotherapy (RT) reduces the target coverage of superficial tumours. Consequently, a bolus is widely used to enhance the target coverage for superficial targets. This study evaluates a three-dimensional (3D)-printed customized bolus for a very irregular surface, the outer ear. [Materials and methods] e fabricated a bolus using a computed tomography (CT) scanner and evaluated its efficacy. The head of an Alderson Rando phantom was scanned with a CT scanner. Two 3D boluses of 5- and 10-mm thickness were designed to fit on the surface of the ear. They were printed by the Stratasys Objet260 Connex3 using the malleable “rubber-like” photopolymer Agilus. CT simulations of the Rando phantom with and without the 3D and commercial high density boluses were performed to evaluate the dosimetric properties of the 3D bolus. The prescription dose to the outer ear was 50 Gy at 2 Gy/fraction. [Results] We observed that the target coverage was slightly better with the 3D bolus of 10 mm compared with the commercial one (D98% 98.2% vs. 97.6%).The maximum dose was reduced by 6.6% with the 3D bolus and the minimum dose increased by 5.2% when comparing with the commercial bolus. In addition, the homogeneity index was better for the 3D bolus (0.041 vs. 0.073). [Conclusion] e successfully fabricated a customized 3D bolus for a very irregular surface. The target coverage and dosimetric parameters were at least comparable with a commercial bolus. Thus, the use of malleable materials can be considered for the fabrication of customized boluses in cases with complex anatomy. |
Databáze: | OpenAIRE |
Externí odkaz: |