N-Acylhomoserine lactone quorum-sensing signalling in antagonistic phenazine-producing Pseudomonas isolates from the red cocoyam rhizosphere
Autor: | Gia Khuong Hoang Hua, K. De Maeyer, Herlinde Noppe, Jolien D'aes, Lynn Vanhaecke, Maaike Perneel, Monica Höfte |
---|---|
Rok vydání: | 2011 |
Předmět: |
DNA
Bacterial Phenazine Pseudomonas fluorescens Acyl-Butyrolactones Plant Roots Microbiology chemistry.chemical_compound Pseudomonas aureofaciens Tandem Mass Spectrometry Pseudomonas Antibiosis Operon Rhizosphere biology Pythium myriotylum Quorum Sensing biology.organism_classification Pseudomonas chlororaphis Quorum sensing Biochemistry chemistry Genes Bacterial Mutation Phenazines Colocasia Signal Transduction |
Zdroj: | Microbiology. 157:459-472 |
ISSN: | 1465-2080 1350-0872 |
DOI: | 10.1099/mic.0.043125-0 |
Popis: | Forty fluorescent Pseudomonas strains isolated from white and red cocoyam roots were tested for their ability to synthesize N-acyl-l-homoserine lactones (acyl-HSLs). Remarkably, only isolates from the red cocoyam rhizosphere that were antagonistic against the cocoyam root rot pathogen Pythium myriotylum and synthesized phenazine antibiotics produced acyl-HSLs. This supports the assumption that acyl-HSL production is related to the antagonistic activity of the strains. After detection, the signal molecules were identified through TLC-overlay and liquid chromatography-multiple MS (LC-MS/MS) analysis. In our representative strain, Pseudomonas CMR12a, production of the signal molecules could be assigned to two quorum-sensing (QS) systems. The first one is the QS system for phenazine production, PhzI/PhzR, which seemed to be well conserved, since it was genetically organized in the same way as in the well-described phenazine-producing Pseudomonas strains Pseudomonas fluorescens 2-79, Pseudomonas chlororaphis PCL1391 and Pseudomonas aureofaciens 30-84. The newly characterized genes cmrI and cmrR make up the second QS system of CMR12a, under the control of the uncommon N-3-hydroxy-dodecanoyl-homoserine lactone (3-OH-C12-HSL) and with low similarity to other Pseudomonas QS systems. No clear function could yet be assigned to the CmrI/CmrR system, although it contributes to the biocontrol capability of CMR12a. Both the PhzI/PhzR and CmrI/CmrR systems are controlled by the GacS/GacA two-component regulatory system. |
Databáze: | OpenAIRE |
Externí odkaz: |