FITTING SUBGROUP AND NILPOTENT RESIDUAL OF FIXED POINTS

Autor: Pavel Shumyatsky, Emerson de Melo
Rok vydání: 2018
Předmět:
Zdroj: Bulletin of the Australian Mathematical Society. 100:61-67
ISSN: 1755-1633
0004-9727
DOI: 10.1017/s0004972718001272
Popis: Let $q$ be a prime and $A$ an elementary abelian group of order at least $q^3$ acting by automorphisms on a finite $q'$-group $G$. It is proved that if $|\gamma_{\infty}(C_{G}(a))|\leq m$ for any $a\in A^{\#}$, then the order of $\gamma_{\infty}(G)$ is $m$-bounded. If $F(C_{G}(a))$ has index at most $m$ in $C_G(a)$ for any $a \in A^{\#}$, then the index of $F_2(G)$ is $m$-bounded.
Comment: arXiv admin note: text overlap with arXiv:1712.08103
Databáze: OpenAIRE