From 2-Sequents and Linear Nested Sequents to Natural Deduction for Normal Modal Logics

Autor: Simone Martini, Andrea Masini, Margherita Zorzi
Přispěvatelé: Department of Computer Science and Engineering [Bologna] (DISI), Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), Foundations of Component-based Ubiquitous Systems (FOCUS), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Dipartimento di Informatica - Scienza e Ingegneria [Bologna] (DISI), Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO)-Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), Dipartimento di Informatica, Università degli Studi di Verona, Università degli studi di Verona = University of Verona (UNIVR), Martini S., Masini A., Zorzi M.
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Normalization (statistics)
FOS: Computer and information sciences
Computer Science - Logic in Computer Science
Reduction (recursion theory)
General Computer Science
Logic
linear nested sequents
[INFO.INFO-GL]Computer Science [cs]/General Literature [cs.GL]
0102 computer and information sciences
Consistency (knowledge bases)
Intuitionistic logic
intuitionistic logic
01 natural sciences
Theoretical Computer Science
Computer Science::Logic in Computer Science
Accessibility relation
Natural deduction
normalization
intuitionistic logic
2-sequents
linear nested sequents

0101 mathematics
natural deduction
Mathematics
Natural deduction
[INFO.INFO-PL]Computer Science [cs]/Programming Languages [cs.PL]
010102 general mathematics
[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO]
2-sequents
2-sequent
Formal system
Logic in Computer Science (cs.LO)
Algebra
linear nested sequent
Computational Mathematics
Mathematics::Logic
Modal
TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES
normalization
010201 computation theory & mathematics
TheoryofComputation_LOGICSANDMEANINGSOFPROGRAMS
F.4.1
03B22
03B45
03F05
Zdroj: ACM Transactions on Computational Logic
ACM Transactions on Computational Logic, Association for Computing Machinery, 2021, 22 (3), pp.1-29. ⟨10.1145/3461661⟩
ACM Transactions on Computational Logic, 2021, 22 (3), pp.1-29. ⟨10.1145/3461661⟩
ISSN: 1529-3785
1557-945X
DOI: 10.1145/3461661⟩
Popis: International audience; We extend to natural deduction the approach of Linear Nested Sequents and of 2-Sequents. Formulas are decorated with a spatial coordinate, which allows a formulation of formal systems in the original spirit of natural deduction: only one introduction and one elimination rule per connective, no additional (structural) rule, no explicit reference to the accessibility relation of the intended Kripke models. We give systems for the normal modal logics from K to S4. For the intuitionistic versions of the systems, we define proof reduction, and prove proof normalization, thus obtaining a syntactical proof of consistency. For logics K and K4 we use existence predicates (à la Scott) for formulating sound deduction rules.
Databáze: OpenAIRE