Improved cardiovascular risk prediction in patients with end-stage renal disease on hemodialysis using machine learning modeling and circulating microribonucleic acids
Autor: | Faiez Zannad, Roland E. Schmieder, Ziad A. Massy, Bengt Fellström, Kevin Duarte, David de Gonzalo-Calvo, Nicolas Girerd, Alan G. Jardine, Pablo Martínez-Camblor, Patrick Rossignol, Christian Bär, Thomas Thum, Hallvard Holdaas |
---|---|
Přispěvatelé: | Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School [Hannover] (MHH), Arnau de Vilanova University Hospital [Lleida, Spain], Institute of Health Carlos III, Geisel School of Medicine at Dartmouth, Centre d'investigation clinique plurithématique Pierre Drouin [Nancy] (CIC-P), Centre d'investigation clinique [Nancy] (CIC), Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lorraine (UL)-Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lorraine (UL), Défaillance Cardiovasculaire Aiguë et Chronique (DCAC), Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lorraine (UL), Cardiovascular and Renal Clinical Trialists [Vandoeuvre-les-Nancy] (INI-CRCT), Institut Lorrain du Coeur et des Vaisseaux Louis Mathieu [Nancy], French-Clinical Research Infrastructure Network - F-CRIN [Paris] (Cardiovascular & Renal Clinical Trialists - CRCT ), Uppsala University Hospital, Friedrich–Alexander University Erlangen–Nürnberg (FAU), University of Glasgow, Service Néphrologie/Dialyse [AP-HP Ambroise-Paré], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Ambroise Paré [AP-HP], Centre de recherche en épidémiologie et santé des populations (CESP), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Paul Brousse-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay, Oslo University Hospital [Oslo], TT received funding the Federal Ministry of Education and Research (BMBF, Germany, research grant ERA-CVD JTC2016 EXPERT, 01KL1711).CIBERES (CB07/06/2008 to DdGC) is a project from Carlos III Health Institute. PR, FZ, NG and KD are supported by a grant by the RHU Fight-HF, apublic grant overseen by the French National Research Agency (ANR) as part of the second 'Investissements d’Avenir' program (reference:ANR-15-RHUS-0004), by the French PIA project 'Lorraine Université d’Excellence' (reference: ANR-15-IDEX-04-LUE), the ANR FOCUS-MR (reference: ANR-15-CE14-0032-01), ERA-CVD EXPERT (reference: ANR-16-ECVD-0002-02), Contrat de Plan Etat Lorraine IT2MP and FEDER Lorraine., IMPACT GEENAGE, ANR-16-ECVD-0002,EXPERT,Exploring new pathways in age-related heart diseases(2016), ANR-15-CE14-0032,MR-focus,Régulation, Diagnostique et Thérapeutique ciblée du récepteur minéralocorticoïde dans le remodelage cardiaque(2015), ANR-15-RHUS-0004,FIGHT-HF,Combattre l'insuffisance cardiaque(2015), ANR-15-IDEX-0004,LUE,Isite LUE(2015), DE CARVALHO, Philippe, Exploring new pathways in age-related heart diseases - - EXPERT2016 - ANR-16-ECVD-0002 - ERA-CVD - VALID, Régulation, Diagnostique et Thérapeutique ciblée du récepteur minéralocorticoïde dans le remodelage cardiaque - - MR-focus2015 - ANR-15-CE14-0032 - AAPG2015 - VALID, Combattre l'insuffisance cardiaque - - FIGHT-HF2015 - ANR-15-RHUS-0004 - RHUS - VALID, ISITE - Isite LUE - - LUE2015 - ANR-15-IDEX-0004 - IDEX - VALID |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Male
0301 basic medicine Oncology [SDV]Life Sciences [q-bio] medicine.medical_treatment Medicine (miscellaneous) Disease 030204 cardiovascular system & hematology [SDV.MHEP.UN]Life Sciences [q-bio]/Human health and pathology/Urology and Nephrology 0302 clinical medicine AURORA trial Urologi och njurmedicin Medicine Pharmacology Toxicology and Pharmaceutics (miscellaneous) Aged 80 and over [SDV.MHEP] Life Sciences [q-bio]/Human health and pathology microRNA Reverse Transcriptase Polymerase Chain Reaction Confounding Middle Aged Kidney disease [SDV.MHEP.CSC] Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system 3. Good health [SDV] Life Sciences [q-bio] Cardiovascular Diseases Hemodialysis Regression Analysis Biomarker (medicine) Female Research Paper Cart medicine.medical_specialty End stage renal disease 03 medical and health sciences [SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system Renal Dialysis Internal medicine Machine learning Humans Urology and Nephrology Aged Sequence Analysis RNA business.industry Biomarker medicine.disease Cardiovascular risk [SDV.MHEP.UN] Life Sciences [q-bio]/Human health and pathology/Urology and Nephrology MicroRNAs 030104 developmental biology Case-Control Studies Kidney Failure Chronic business Biomarkers [SDV.MHEP]Life Sciences [q-bio]/Human health and pathology |
Zdroj: | Theranostics Theranostics, Ivyspring International Publisher, 2020, 10 (19), pp.8665-8676. ⟨10.7150/thno.46123⟩ |
ISSN: | 1838-7640 |
DOI: | 10.7150/thno.46123⟩ |
Popis: | International audience; Rationale: To test whether novel biomarkers, such as microribonucleic acids (miRNAs), and nonstandard predictive models, such as decision tree learning, provide useful information for medical decision-making in patients on hemodialysis (HD). Methods: Samples from patients with end-stage renal disease receiving HD included in the AURORA trial were investigated (n=810). The study included two independent phases: phase I (matched cases and controls, n=410) and phase II (unmatched cases and controls, n=400). The composite endpoint was cardiovascular death, nonfatal myocardial infarction or nonfatal stroke. miRNA quantification was performed using miRNA sequencing and RT-qPCR. The CART algorithm was used to construct regression tree models. A bagging-based procedure was used for validation. Results: In phase I, miRNA sequencing in a subset of samples (n=20) revealed miR-632 as a candidate (fold change=2.9). miR-632 was associated with the endpoint, even after adjusting for confounding factors (HR from 1.43 to 1.53). These findings were not reproduced in phase II. Regression tree models identified eight patient subgroups with specific risk patterns. miR-186-5p and miR-632 entered the tree by redefining two risk groups: patients older than 64 years and with hsCRP |
Databáze: | OpenAIRE |
Externí odkaz: |