Multiple Periodic solutions and Positive Homoclinic Solution for a differential equation
Autor: | Anderson L. A. de Araujo, Kennedy Martins Pedroso |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Bull. Belg. Math. Soc. Simon Stevin 20, no. 3 (2013), 535-546 |
ISSN: | 1370-1444 |
DOI: | 10.36045/bbms/1378314514 |
Popis: | We consider the nonautonomous differential equation of second order $x''- a(t)x+b(t) x^2+c(t)x^{3}=0$, where $a(t),b(t),c(t)$ are $T$-periodic functions. This is a biomathematical model of an aneurysm in the circle of Willis. We prove the existence of at least two $T$-periodic solution for this equation, using coincidence degree theories. |
Databáze: | OpenAIRE |
Externí odkaz: |