Finite element modeling of quasi-brittle cracks in 2D and 3D with enhanced strain accuracy
Autor: | G. B. Barbat, Michele Chiumenti, Miguel Cervera |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental, Universitat Politècnica de Catalunya. RMEE - Grup de Resistència de Materials i Estructures en l'Enginyeria |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Cracking
Dependency (UML) Discretization Constitutive equation Computational Mechanics Ocean Engineering Enginyeria civil::Materials i estructures [Àrees temàtiques de la UPC] 02 engineering and technology Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits [Àrees temàtiques de la UPC] Structural failure 01 natural sciences Displacement (vector) Fragilitat -- Models matemàtics 0203 mechanical engineering Mixed finite elements 0101 mathematics Mathematics business.industry Applied Mathematics Mechanical Engineering Mathematical analysis Isotropy Brittleness--Mathematical models Mixed finite element method Structural engineering Finite element method 010101 applied mathematics Computational Mathematics 020303 mechanical engineering & transports Damage Computational Theory and Mathematics Tetrahedron business Strain localization |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
Popis: | The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-017-1438-8 This paper discusses the finite element modeling of cracking in quasi-brittle materials. The problem is addressed via a mixed strain/displacement finite element formulation and an isotropic damage constitutive model. The proposed mixed formulation is fully general and is applied in 2D and 3D. Also, it is independent of the specific finite element discretization considered; it can be equally used with triangles/tetrahedra, quadrilaterals/hexahedra and prisms. The feasibility and accuracy of the method is assessed through extensive comparison with experimental evidence. The correlation with the experimental tests shows the capacity of the mixed formulation to reproduce the experimental crack path and the force–displacement curves with remarkable accuracy. Both 2D and 3D examples produce results consistent with the documented data. Aspects related to the discrete solution, such as convergence regarding mesh resolution and mesh bias, as well as other related to the physical model, like structural size effect and the influence of Poisson’s ratio, are also investigated. The enhanced accuracy of the computed strain field leads to accurate results in terms of crack paths, failure mechanisms and force displacement curves. Spurious mesh dependency suffered by both continuous and discontinuous irreducible formulations is avoided by the mixed FE, without the need of auxiliary tracking techniques or other computational schemes that alter the continuum mechanical problem. |
Databáze: | OpenAIRE |
Externí odkaz: |