Irrationality of motivic zeta functions

Autor: Michael Larsen, Valery A. Lunts
Rok vydání: 2020
Předmět:
Zdroj: Duke Math. J. 169, no. 1 (2020), 1-30
ISSN: 0012-7094
DOI: 10.1215/00127094-2019-0035
Popis: Let $K_0(\mathrm{Var}_{\mathbb{Q}})[1/\mathbb{L}]$ denote the Grothendieck ring of $\mathbb{Q}$-varieties with the Lefschetz class inverted. We show that there exists a K3 surface X over $\mathbb{Q}$ such that the motivic zeta function $\zeta_X(t) := \sum_n [\mathrm{Sym}^n X]t^n$ regarded as an element in $K_0(\mathrm{Var}_{\mathbb{Q}})[1/\mathbb{L}][[t]]$ is not a rational function in $t$, thus disproving a conjecture of Denef and Loeser.
Comment: 25 pages
Databáze: OpenAIRE