A Tight Erdös--Pósa Function for Wheel Minors

Autor: Jean Florent Raymond, Gwenaël Joret, Samuel Fiorini, Tony Huynh, Ignasi Sau, Pierre Aboulker
Přispěvatelé: Optimisation Combinatoire (G-SCOP_OC ), Laboratoire des sciences pour la conception, l'optimisation et la production (G-SCOP), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Département de mathématiques Université Libre de Bruxelles, Université libre de Bruxelles (ULB), Département d'Informatique, Faculty of Mathematics, Informatics, and Mechanics [Warsaw] (MIMUW), University of Warsaw (UW), Algorithmes, Graphes et Combinatoire (ALGCO), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Rok vydání: 2018
Předmět:
Zdroj: SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics, Society for Industrial and Applied Mathematics, 2018, 32 (3), pp.2302-2312. ⟨10.1137/17M1153169⟩
ISSN: 1095-7146
0895-4801
DOI: 10.1137/17m1153169
Popis: International audience; Let $W_t$ denote the wheel on t+1 vertices. We prove that for every integer $t \geq 3$ there is a constant $c=c(t)$ such that for every integer $k \geq 1$ and every graph $G$, either $G$ has $k$ vertex-disjoint subgraphs each containing $W_t$ as a minor, or there is a subset $X$ of at most $c k \log k$ vertices such that $G-X$ has no $W_t$ minor. This is best possible, up to the value of $c$. We conjecture that the result remains true more generally if we replace $W_t$ with any fixed planar graph $H$.
Databáze: OpenAIRE