Using network theory and machine learning to predict El Niño
Autor: | Nooteboom, P.D., Feng, Q., López, Cristóbal, Hernández-García, Emilio, Dijkstra, H.A., Sub Physical Oceanography, Sub Onderzoek- en Valorisatiebeleid, Marine and Atmospheric Research |
---|---|
Přispěvatelé: | Ministerio de Economía y Competitividad (España), European Commission, Sub Physical Oceanography, Sub Onderzoek- en Valorisatiebeleid, Marine and Atmospheric Research |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
010504 meteorology & atmospheric sciences
lcsh:Dynamic and structural geology Computer science Lag Forecast skill 02 engineering and technology Network theory Machine learning computer.software_genre 01 natural sciences lcsh:QE500-639.5 0202 electrical engineering electronic engineering information engineering Autoregressive–moving-average model Autoregressive integrated moving average lcsh:Science 0105 earth and related environmental sciences Mathematics Artificial neural network business.industry lcsh:QE1-996.5 lcsh:Geology Physics - Atmospheric and Oceanic Physics El Niño Southern Oscillation Ensemble prediction General Earth and Planetary Sciences 020201 artificial intelligence & image processing lcsh:Q Artificial intelligence business computer Lead time |
Zdroj: | Earth System Dynamics, Vol 9, Pp 969-983 (2018) Digital.CSIC. Repositorio Institucional del CSIC instname Earth System Dynamics, 9(3), 969. Copernicus GmbH |
ISSN: | 2190-4979 2190-4987 |
Popis: | The skill of current predictions of the warm phase of the El Niño Southern Oscillation (ENSO) reduces significantly beyond a lag time of 6 months. In this paper, we aim to increase this prediction skill at lag times of up to 1 year. The new method combines a classical autoregressive integrated moving average technique with a modern machine learning approach (through an artificial neural network). The attributes in such a neural network are derived from knowledge of physical processes and topological properties of climate networks, and they are tested using a Zebiak–Cane-type model and observations. For predictions up to 6 months ahead, the results of the hybrid model give a slightly better skill than the CFSv2 ensemble prediction by the National Centers for Environmental Prediction (NCEP). Interestingly, results for a 12-month lead time prediction have a similar skill as the shorter lead time predictions. Cristóbal López and Emilio Hernández-García acknowledge support from Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional through the LAOP project (CTM2015-66407-P, MINECO/FEDER). |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |