Using network theory and machine learning to predict El Niño

Autor: Nooteboom, P.D., Feng, Q., López, Cristóbal, Hernández-García, Emilio, Dijkstra, H.A., Sub Physical Oceanography, Sub Onderzoek- en Valorisatiebeleid, Marine and Atmospheric Research
Přispěvatelé: Ministerio de Economía y Competitividad (España), European Commission, Sub Physical Oceanography, Sub Onderzoek- en Valorisatiebeleid, Marine and Atmospheric Research
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Earth System Dynamics, Vol 9, Pp 969-983 (2018)
Digital.CSIC. Repositorio Institucional del CSIC
instname
Earth System Dynamics, 9(3), 969. Copernicus GmbH
ISSN: 2190-4979
2190-4987
Popis: The skill of current predictions of the warm phase of the El Niño Southern Oscillation (ENSO) reduces significantly beyond a lag time of 6 months. In this paper, we aim to increase this prediction skill at lag times of up to 1 year. The new method combines a classical autoregressive integrated moving average technique with a modern machine learning approach (through an artificial neural network). The attributes in such a neural network are derived from knowledge of physical processes and topological properties of climate networks, and they are tested using a Zebiak–Cane-type model and observations. For predictions up to 6 months ahead, the results of the hybrid model give a slightly better skill than the CFSv2 ensemble prediction by the National Centers for Environmental Prediction (NCEP). Interestingly, results for a 12-month lead time prediction have a similar skill as the shorter lead time predictions.
Cristóbal López and Emilio Hernández-García acknowledge support from Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional through the LAOP project (CTM2015-66407-P, MINECO/FEDER).
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje