Early transcriptional changes after UVB treatment in atopic dermatitis include inverse regulation of IL‐36γ and IL‐37
Autor: | Maria Bradley, Jan-Øivind Holm, Astrid Haaskjold Lossius, Olav Sundnes, Samina Asad, Frank Sætre, Guttorm Haraldsen, Teresa Løvold Berents, Hogne Røed Nilsen |
---|---|
Rok vydání: | 2020 |
Předmět: |
Adult
Male 0301 basic medicine Time Factors Transcription Genetic Microarray Ultraviolet Rays medicine.medical_treatment Inflammation Dermatology Biochemistry Dermatitis Atopic Defensins Transcriptome Young Adult 030207 dermatology & venereal diseases 03 medical and health sciences 0302 clinical medicine Immune system Downregulation and upregulation Gene expression Humans Medicine Molecular Biology Aged integumentary system business.industry Gene Expression Profiling S100 Proteins Atopic dermatitis Middle Aged medicine.disease 030104 developmental biology Cytokine Immunology Female Ultraviolet Therapy medicine.symptom business Interleukin-1 |
Zdroj: | Experimental Dermatology. 30:249-261 |
ISSN: | 1600-0625 0906-6705 |
DOI: | 10.1111/exd.14217 |
Popis: | Phototherapy with narrow‐band Ultraviolet B (nb‐UVB) is a major therapeutic option in atopic dermatitis (AD), yet knowledge of the early molecular responses to this treatment is lacking. The objective of this study was to map the early transcriptional changes in AD skin in response to nb‐UVB treatment. Adult patients (n = 16) with AD were included in the study and scored with validated scoring tools. AD skin was irradiated with local nb‐UVB on day 0, 2 and 4. Skin biopsies were taken before and after treatment (day 0 and 7) and analysed for genome‐wide modulation of transcription. When examining the early response after three local UVB treatments, gene expression analysis revealed 77 significantly modulated transcripts (30 down‐ and 47 upregulated). Among them were transcripts related to the inflammatory response, melanin synthesis, keratinization and epidermal structure. Interestingly, the pro‐inflammatory cytokine IL‐36γ was reduced after treatment, while the anti‐inflammatory cytokine IL‐37 increased after treatment with nb‐UVB. There was also a modulation of several other mediators involved in inflammation, among them defensins and S100 proteins. This is the first study of early transcriptomic changes in AD skin in response to nb‐UVB. We reveal robust modulation of a small group of inflammatory and anti‐inflammatory targets, including the IL‐1 family members IL36γ and IL‐37, which is evident before any detectable changes in skin morphology or immune cell infiltrates. These findings provide important clues to the molecular mechanisms behind the treatment response and shed light on new potential treatment targets. |
Databáze: | OpenAIRE |
Externí odkaz: |