Metropolitan Quantum Key Distribution with Silicon Photonics
Autor: | Scott A. Hamilton, Andrew Pomerene, Changchen Chen, Andrew Starbuck, Douglas C. Trotter, Christopher T. DeRose, Anthony L. Lentine, Junji Urayama, Darius Bunandar, Paul Davids, Hong Cai, Matthew E. Grein, Christopher M. Long, Dirk Englund, Catherine Lee, Nicholas Boynton, Ryan M. Camacho, Nicholas Martinez, Franco N. C. Wong |
---|---|
Přispěvatelé: | Lincoln Laboratory, Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science, Bunandar, Darius, Lee, Catherine, Chen, Changchen, Wong, Ngai Chuen, Camacho, Ryan |
Rok vydání: | 2018 |
Předmět: |
Quantum Physics
Silicon photonics business.industry Computer science Physics QC1-999 Electrical engineering FOS: Physical sciences General Physics and Astronomy Field tests Quantum key distribution 01 natural sciences Metropolitan area Telecommunications network 010309 optics ComputerSystemsOrganization_MISCELLANEOUS 0103 physical sciences Scalability Quantum Physics (quant-ph) 010306 general physics business Encoder Computer Science::Cryptography and Security Quantum computer |
Zdroj: | American Physical Society Physical Review X, Vol 8, Iss 2, p 021009 (2018) |
ISSN: | 2160-3308 |
Popis: | Photonic integrated circuits provide a compact and stable platform for quantum photonics. Here we demonstrate a silicon photonics quantum key distribution (QKD) encoder in the first high-speed polarization-based QKD field tests. The systems reach composable secret key rates of 1.039 Mbps in a local test (on a 103.6-m fiber with a total emulated loss of 9.2 dB) and 157 kbps in an intercity metropolitan test (on a 43-km fiber with 16.4 dB loss). Our results represent the highest secret key generation rate for polarization-based QKD experiments at a standard telecom wavelength and demonstrate photonic integrated circuits as a promising, scalable resource for future formation of metropolitan quantum-secure communications networks. |
Databáze: | OpenAIRE |
Externí odkaz: |