Helical Superstructure of Intermediate Filaments

Autor: Martin Michael Müller, Igor M. Kulić, Hervé Mohrbach, Sarah Köster, René Messina, Lila Bouzar, Bernd Nöding
Přispěvatelé: Université des Sciences et de la Technologie Houari Boumediene [Alger] (USTHB), Laboratoire de Physique et Chimie Théoriques (LPCT), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Sadron (ICS), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut für Röntgenphysik, Georg-August-University [Göttingen], Müller, Martin Michael, Université des Sciences et de la Technologie Houari Boumediene = University of Sciences and Technology Houari Boumediene [Alger] (USTHB), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Georg-August-University = Georg-August-Universität Göttingen
Rok vydání: 2018
Předmět:
Physics
[PHYS.PHYS.PHYS-BIO-PH] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]
Surface stress
[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]
General Physics and Astronomy
Torsion (mechanics)
Tangent
FOS: Physical sciences
Condensed Matter - Soft Condensed Matter
Curvature
01 natural sciences
Molecular physics
Instability
[PHYS.COND.CM-SCM] Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]
Protein filament
Quantitative Biology::Subcellular Processes
0103 physical sciences
Soft Condensed Matter (cond-mat.soft)
010306 general physics
Cytoskeleton
Intermediate filament
[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]
ComputingMilieux_MISCELLANEOUS
Zdroj: Physical Review Letters
Physical Review Letters, American Physical Society, 2019, 122 (9), ⟨10.1103/PhysRevLett.122.098101⟩
Physical Review Letters, 2019, 122 (9), ⟨10.1103/PhysRevLett.122.098101⟩
ISSN: 1079-7114
0031-9007
DOI: 10.1103/PhysRevLett.122.098101⟩
Popis: Intermediate filaments are the least explored among the large cytoskeletal elements. We show here that they display conformational anomalies in narrow microfluidic channels. Their unusual behavior can be understood as the consequence of a previously undetected, large-scale helically curved superstructure. Confinement in a channel orders the otherwise soft, strongly fluctuating helical filaments and enhances their structural correlations, giving rise to experimentally detectable, strongly oscillating tangent correlation functions. We propose an explanation for the detected intrinsic curving phenomenon-an elastic shape instability that we call autocoiling. The mechanism involves self-induced filament buckling via a surface stress located at the outside of the cross section. The results agree with ultrastructural findings and rationalize for the commonly observed looped intermediate filament shapes. Beyond curvature, explaining the molecular origin of the detected helical torsion remains an interesting challenge.
Databáze: OpenAIRE