Kolmogorov turbulence in a random-force-driven Burgers equation: Anomalous scaling and probability density functions
Autor: | Victor Yakhot, Alexei Chekhlov |
---|---|
Rok vydání: | 1995 |
Předmět: | |
Zdroj: | Physical Review E. 52:5681-5684 |
ISSN: | 1095-3787 1063-651X |
DOI: | 10.1103/physreve.52.5681 |
Popis: | High-resolution numerical experiments, described in this work, show that velocity fluctuations governed by the one-dimensional Burgers equation driven by a white-in-time random noise with the spectrum $\overline{|f(k)|^2}\propto k^{-1}$ exhibit a biscaling behavior: All moments of velocity differences $S_{n\le 3}(r)=\overline{|u(x+r)-u(x)|^n}\equiv\overline{|\Delta u|^n}\propto r^{n/3}$, while $S_{n>3}\propto r^{\zeta_n}$ with $\zeta_n\approx 1$ for real $n>0$ (Chekhlov and Yakhot, Phys. Rev. E {\bf 51}, R2739, 1995). The probability density function, which is dominated by coherent shocks in the interval $\Delta u Comment: 12 pages, psfig macro, 4 figs in Postscript, accepted to Phys. Rev. E as a Brief Communication |
Databáze: | OpenAIRE |
Externí odkaz: |