New Algorithms for Discrete-Time Parameter Estimation

Autor: Yingnan Cui, Joseph E. Gaudio, Anuradha M. Annaswamy
Rok vydání: 2021
Předmět:
DOI: 10.48550/arxiv.2103.16653
Popis: We propose two algorithms for discrete-time parameter estimation, one for time-varying parameters under persistent excitation (PE) condition, another for constant parameters under no PE condition. For the first algorithm, we show that in the presence of time-varying unknown parameters, the parameter estimation error converges uniformly to a compact set under conditions of persistent excitation, with the size of the compact set proportional to the time-variation of unknown parameters. Leveraging a projection operator, the second algorithm is shown to result in boundedness guarantees when the plant has constant unknown parameters. Simulations show better convergence results compared to recursive least squares (RLS) and comparable results to RLS with forgetting factor.
Comment: 20 pages
Databáze: OpenAIRE