A high-fidelity crystal-plasticity finite element methodology for low-cycle fatigue using automatic electron backscatter diffraction scan conversion: Application to hot-rolled cobalt–chromium alloy
Autor: | Noel M. Harrison, Sean B. Leen, Yuhui Tu |
---|---|
Přispěvatelé: | Science Foundation Ireland |
Rok vydání: | 2021 |
Předmět: |
Materials science
grains and interfaces 02 engineering and technology law.invention Crystal plasticity Metal micromechanics 0203 mechanical engineering law General Materials Science Composite material Scan conversion electron microscopy Mechanical Engineering Micromechanics modeling 021001 nanoscience & nanotechnology Finite element method Crystal-plasticity 020303 mechanical engineering & transports visual_art visual_art.visual_art_medium Substructure fatigue Electron microscope 0210 nano-technology Electron backscatter diffraction |
Zdroj: | Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 235:1901-1924 |
ISSN: | 2041-3076 1464-4207 |
DOI: | 10.1177/14644207211010836 |
Popis: | The common approach to crystal-plasticity finite element modeling for load-bearing prediction of metallic structures involves the simulation of simplified grain morphology and substructure detail. This paper details a methodology for predicting the structure–property effect of as-manufactured microstructure, including true grain morphology and orientation, on cyclic plasticity, and fatigue crack initiation in biomedical-grade CoCr alloy. The methodology generates high-fidelity crystal-plasticity finite element models, by directly converting measured electron backscatter diffraction metal microstructure grain maps into finite element microstructural models, and thus captures essential grain definition for improved microstructure–property analyses. This electron backscatter diffraction-based method for crystal-plasticity finite element model generation is shown to give approximately 10% improved agreement for fatigue life prediction, compared with the more commonly used Voronoi tessellation method. However, the added microstructural detail available in electron backscatter diffraction–crystal-plasticity finite element did not significantly alter the bulk stress–strain response prediction, compared to Voronoi tessellation–crystal-plasticity finite element. The new electron backscatter diffraction-based method within a strain-gradient crystal-plasticity finite element model is also applied to predict measured grain size effects for cyclic plasticity and fatigue crack initiation, and shows the concentration of geometrically necessary dislocations around true grain boundaries, with smaller grain samples exhibiting higher overall geometrically necessary dislocations concentrations. In addition, minimum model sizes for Voronoi tessellation–crystal-plasticity finite element and electron backscatter diffraction–crystal-plasticity finite element models are proposed for cyclic hysteresis and fatigue crack initiation prediction. This publication has emanated from research conducted with the financial support of Science Foundation Ireland under Grant number 16/RC/3872. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. The authors wish to acknowledge the Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support. The microstructure 668 characterization work is supported by the University of Limerick, which is highly appreciated. The 669 authors would also like to acknowledge Dr P. J. Ashton for the helpful discussion. peer-reviewed |
Databáze: | OpenAIRE |
Externí odkaz: |