We prove that the class of linear context-free tree languages is not closed under inverse linear tree homomorphisms. The proof is by contradiction: we encode Dyck words into a context-free tree language and prove that its preimage under a certain linear tree homomorphism cannot be generated by any context-free tree grammar. A positive result can still be obtained: the linear monadic context-free tree languages are closed under inverse linear tree homomorphisms. 30 pages, 1 figure; fixed a variable collision (t') in Section 7