Novel Polymorph of GaSe

Autor: Paulo J. Ferreira, Sascha Sadewasser, Marcel S. Claro, Justyna Grzonka, Alejandro Molina-Sanchez
Přispěvatelé: Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica
Rok vydání: 2021
Předmět:
Zdroj: Adv. Funct. Mater. 2021 2104965
RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz
instname
Popis: 2D GaSe is a semiconductor belonging to the group of post-transition metal chalcogenides with great potential for advanced optoelectronic applications. The weak interlayer interaction in multilayer 2D materials allows the formation of several polymorphs. Here, the first structural observation of a new GaSe polymorph is reported, characterized by a distinct atomic configuration with a centrosymmetric monolayer (D-3d point group). The atomic structure of this new GaSe polymorph is determined by aberration-corrected scanning transmission electron microscopy. Density-functional theory calculations verify the structural stability of this polymorph. Furthermore, the band structure and Raman intensities are calculated, predicting slight differences to the currently known polymorphs. In addition, the occurrence of layer rotations, interlayer relative orientations, as well as translation shear faults is discussed. The experimental confirmation of the new GaSe polymorph indicates the importance of investigating changes in the crystal structure, which can further impact the properties of this family of compounds
This article has received support from the project Nanotechnology Based Functional Solutions (NORTE-01-0145-FEDER-000019), supported by Norte Portugal Regional Operational Programme (NORTE2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). Additional support by National Funds through the Portuguese Foundation for Science and Technology (FCT) in the framework of the project "LA2D" -PTDC/FIS-NAN/3668/2014 is acknowledged. This work was supported by FCT, through IDMEC, under LAETA, project UIDB/50022/2020. A. M.-S. thanks the Marie-Curie-COFUND program Nano TRAIN for Growth II (Grant Agreement 713640) and the Ramon y Cajal programme (grant RYC2018-024024-I, MINECO, Spain). This work was carried out in part through the use of the INL Advanced Electron Microscopy, Imaging, and Spectroscopy Facility. The computations were performed on the Tirant III cluster of the Servei d'Informatica of the University of Valencia (project vlc82) and on Mare Nostrum cluster of the Barcelona Supercomputing Center (project FI-2020-2-033 and FI-2020-3-0021).
Databáze: OpenAIRE