Requirement for DNA Ligase IV during Embryonic Neuronal Development
Autor: | Antony M. Carr, Cong Liu, Eva Hoffmann, Zhao-Qi Wang, Ralph Gruber, Penny A. Jeggo, Limei Ju, Susanne A. Gatz |
---|---|
Rok vydání: | 2011 |
Předmět: |
Chromosomal Proteins
Non-Histone animal diseases Cellular differentiation Apoptosis Cell Cycle Proteins Ataxia Telangiectasia Mutated Proteins Cerebral Ventricles Histones DNA Ligase ATP Mice Neural Stem Cells Tubulin Radiation Ionizing DNA Breaks Double-Stranded Neurons chemistry.chemical_classification General Neuroscience Cell Cycle Age Factors Gene Expression Regulation Developmental DNA repair protein XRCC4 Cell cycle Neural stem cell DNA-Binding Proteins Tumor Suppressor p53-Binding Protein 1 DNA Ligases DNA damage LIG4 syndrome Embryonic Development Mice Transgenic Protein Serine-Threonine Kinases Biology Models Biological Article In Situ Nick-End Labeling medicine Animals Cysteine Cell Proliferation DNA ligase Tumor Suppressor Proteins Embryo Mammalian medicine.disease Molecular biology Mice Inbred C57BL Animals Newborn Bromodeoxyuridine nervous system chemistry Mutation Tyrosine T-Box Domain Proteins |
Zdroj: | Journal of Neuroscience |
ISSN: | 1529-2401 0270-6474 |
Popis: | The embryonic ventricular and subventricular zones (VZ/SVZ) contain the neuronal stem and progenitor cells and undergo rapid proliferation. The intermediate zone (IZ) contains nonreplicating, differentiated cells. The VZ/SVZ is hypersensitive to radiation-induced apoptosis. Ablation of DNA non-homologous end-joining (NHEJ) proteins, XRCC4 or DNA ligase IV (LigIV), confers ataxia telangiectasia mutated (ATM)-dependent apoptosis predominantly in the IZ. We examine the mechanistic basis underlying these distinct sensitivities using a viable LigIV (Lig4(Y288C)) mouse, which permits an examination of the DNA damage responses in the embryonic and adult brain. Via combined analysis of DNA breakage, apoptosis, and cell-cycle checkpoint control in tissues, we show that apoptosis in the VZ/SVZ and IZ is activated by low numbers of DNA double-strand breaks (DSBs). Unexpectedly, high sensitivity in the VZ/SVZ arises from sensitive activation of ATM-dependent apoptosis plus an ATM-independent process. In contrast, the IZ appears to be hypersensitive to persistent DSBs. NHEJ functions efficiently in both compartments. The VZ/SVZ and IZ regions incur high endogenous DNA breakage, which correlates with VZ proliferation. We demonstrate a functional G(2)/M checkpoint in VZ/SVZ cells and show that it is not activated by low numbers of DSBs, allowing damaged VZ/SVZ cells to transit into the IZ. We propose a novel model in which microcephaly in LIG4 syndrome arises from sensitive apoptotic induction from persisting DSBs in the IZ, which arise from high endogenous breakage in the VZ/SVZ and transit of damaged cells to the IZ. The VZ/SVZ, in contrast, is highly sensitive to acute radiation-induced DSB formation. |
Databáze: | OpenAIRE |
Externí odkaz: |