Lozenge Tilings of Hexagons with Cuts and Asymptotic Fluctuations: a New Universality Class
Autor: | Kurt Johansson, Pierre van Moerbeke, Mark Adler |
---|---|
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Hexagonal crystal system 010102 general mathematics FOS: Physical sciences Mathematical Physics (math-ph) Renormalization group 01 natural sciences Universality (dynamical systems) 010104 statistics & probability Geometry and Topology 0101 mathematics Mathematical Physics Lozenge Mathematics |
Zdroj: | Mathematical Physics, Analysis and Geometry. 21 |
ISSN: | 1572-9656 1385-0172 |
DOI: | 10.1007/s11040-018-9265-5 |
Popis: | This paper investigates lozenge tilings of non-convex hexagonal regions and more specifically the asymptotic fluctuations of the tilings within and near the strip formed by opposite cuts in the regions, when the size of the regions tend to infinity, together with the cuts. It leads to a new kernel, which is expected to have universality properties. 62 pages, 25 Figures |
Databáze: | OpenAIRE |
Externí odkaz: |