Vieta’s Formula about the Sum of Roots of Polynomials

Autor: Karol Pąk, Artur Korniłowicz
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Formalized Mathematics, Vol 25, Iss 2, Pp 87-92 (2017)
ISSN: 1898-9934
1426-2630
Popis: Summary In the article we formalized in the Mizar system [2] the Vieta formula about the sum of roots of a polynomial anxn + an− 1 xn− 1 + ··· + a 1 x + a 0 defined over an algebraically closed field. The formula says that x 1 + x 2 + ⋯ + x n − 1 + x n = − a n − 1 a n $x_1 + x_2 + \cdots + x_{n - 1} + x_n = - {{a_{n - 1} } \over {a_n }}$ , where x 1, x 2,…, xn are (not necessarily distinct) roots of the polynomial [12]. In the article the sum is denoted by SumRoots.
Databáze: OpenAIRE