Integrative pathway enrichment analysis of multivariate omics data

Autor: Paczkowska M., Barenboim J., Sintupisut N., Fox N. S., Zhu H., Abd-Rabbo D., Mee M. W., Boutros P. C., Abascal F., Amin S. B., Bader G. D., Beroukhim R., Bertl J., Boroevich K. A., Brunak S., Campbell P. J., Carlevaro-Fita J., Chakravarty D., Chan C. W. Y., Chen K., Choi J. K., Deu-Pons J., Dhingra P., Diamanti K., Feuerbach L., Fink J. L., Fonseca N. A., Frigola J., Gambacorti Passerini C., Garsed D. W., Gerstein M., Getz G., Gonzalez-Perez A., Guo Q., Gut I. G., Haan D., Hamilton M. P., Haradhvala N. J., Harmanci A. O., Helmy M., Herrmann C., Hess J. M., Hobolth A., Hodzic E., Hong C., Hornshoj H., Isaev K., Izarzugaza J. M. G., Johnson R., Johnson T. A., Juul M., Juul R. I., Kahles A., Kahraman A., Kellis M., Khurana E., Kim J., Kim J. K., Kim Y., Komorowski J., Korbel J. O., Kumar S., Lanzos A., Lawrence M. S., Lee D., Lehmann K. -V., Li S., Li X., Lin Z., Liu E. M., Lochovsky L., Lou S., Madsen T., Marchal K., Martincorena I., Martinez-Fundichely A., Maruvka Y. E., McGillivray P. D., Meyerson W., Muinos F., Mularoni L., Nakagawa H., Nielsen M. M., Park K., Pedersen J. S., Pich O., Pons T., Pulido-Tamayo S., Raphael B. J., Reyes-Salazar I., Reyna M. A., Rheinbay E., Rubin M. A., Rubio-Perez C., Sabarinathan R., Sahinalp S. C., Saksena G., Salichos L., Sander C., Schumacher S. E., Shackleton M., Shapira O., Shen C., Shrestha R., Shuai S., Sidiropoulos N., Sieverling L., Sinnott-Armstrong N., Stein L. D., Stuart J. M., Tamborero D., Tiao G., Tsunoda T., Umer H. M., Uuskula-Reimand L., Valencia A., Vazquez M., Verbeke L. P. C., Wadelius C., Wadi L., Wang J., Warrell J., Waszak S. M., Weischenfeldt J., Wheeler D. A., Wu G., Yu J., Zhang J., Zhang X., Zhang Y., Zhao Z., Zou L., von Mering C., Reimand J.
Přispěvatelé: Boutros, Paul C [0000-0003-0553-7520], Reimand, Jüri [0000-0002-2299-2309], Apollo - University of Cambridge Repository, Paczkowska, M, Barenboim, J, Sintupisut, N, Fox, N, Zhu, H, Abd-Rabbo, D, Mee, M, Boutros, P, Abascal, F, Amin, S, Bader, G, Beroukhim, R, Bertl, J, Boroevich, K, Brunak, S, Campbell, P, Carlevaro-Fita, J, Chakravarty, D, Chan, C, Chen, K, Choi, J, Deu-Pons, J, Dhingra, P, Diamanti, K, Feuerbach, L, Fink, J, Fonseca, N, Frigola, J, Gambacorti Passerini, C, Garsed, D, Gerstein, M, Getz, G, Gonzalez-Perez, A, Guo, Q, Gut, I, Haan, D, Hamilton, M, Haradhvala, N, Harmanci, A, Helmy, M, Herrmann, C, Hess, J, Hobolth, A, Hodzic, E, Hong, C, Hornshoj, H, Isaev, K, Izarzugaza, J, Johnson, R, Johnson, T, Juul, M, Juul, R, Kahles, A, Kahraman, A, Kellis, M, Khurana, E, Kim, J, Kim, Y, Komorowski, J, Korbel, J, Kumar, S, Lanzos, A, Lawrence, M, Lee, D, Lehmann, K, Li, S, Li, X, Lin, Z, Liu, E, Lochovsky, L, Lou, S, Madsen, T, Marchal, K, Martincorena, I, Martinez-Fundichely, A, Maruvka, Y, Mcgillivray, P, Meyerson, W, Muinos, F, Mularoni, L, Nakagawa, H, Nielsen, M, Park, K, Pedersen, J, Pich, O, Pons, T, Pulido-Tamayo, S, Raphael, B, Reyes-Salazar, I, Reyna, M, Rheinbay, E, Rubin, M, Rubio-Perez, C, Sabarinathan, R, Sahinalp, S, Saksena, G, Salichos, L, Sander, C, Schumacher, S, Shackleton, M, Shapira, O, Shen, C, Shrestha, R, Shuai, S, Sidiropoulos, N, Sieverling, L, Sinnott-Armstrong, N, Stein, L, Stuart, J, Tamborero, D, Tiao, G, Tsunoda, T, Umer, H, Uuskula-Reimand, L, Valencia, A, Vazquez, M, Verbeke, L, Wadelius, C, Wadi, L, Wang, J, Warrell, J, Waszak, S, Weischenfeldt, J, Wheeler, D, Wu, G, Yu, J, Zhang, J, Zhang, X, Zhang, Y, Zhao, Z, Zou, L, von Mering, C, Reimand, J
Rok vydání: 2020
Předmět:
0301 basic medicine
HOMEOSTASIS
Databases
Factual

Messenger
Medizin
Gene Dosage
General Physics and Astronomy
RNA-Seq
Apoptosis
Disease
Genome
Transcriptome
0302 clinical medicine
PCAWG Drivers and Functional Interpretation Working Group
Neoplasms
BINDING
Cancer genomics
Medicine and Health Sciences
2.1 Biological and endogenous factors
Gene Regulatory Networks
NETWORK
Aetiology
Càncer
lcsh:Science
Multidisciplinary
Women's cancers Radboud Institute for Molecular Life Sciences [Radboudumc 17]
Genomics
ATLAS
Prognosis
CANCER
3. Good health
Women's cancers Radboud Institute for Health Sciences [Radboudumc 17]
030220 oncology & carcinogenesis
Data integration
Female
YAP
Sequence Analysis
Metabolic Networks and Pathways
Biotechnology
Signal Transduction
genome sequencing
breast cancers
RNA-seq
whole-genome sequencing (WGS) data
multi-omics pathway

Chromatin Immunoprecipitation
Science
610 Medicine & health
Breast Neoplasms
Computational biology
Biology
Adenocarcinoma
Protein Serine-Threonine Kinases
Article
General Biochemistry
Genetics and Molecular Biology

DNA sequencing
Databases
03 medical and health sciences
Breast Cancer
Genetics
medicine
Humans
Hippo Signaling Pathway
RNA
Messenger

Gene
Factual
SIGNATURES
Biologia molecular
HIPPO PATHWAY
MUTATIONS
Sequence Analysis
RNA

Gene Expression Profiling
Human Genome
Cancer
Biology and Life Sciences
PCAWG Consortium
Computational Biology
General Chemistry
Stem Cell Research
medicine.disease
Omics
Genòmica
Good Health and Well Being
030104 developmental biology
Mutation
RNA
Gene ontology
lcsh:Q
Genètica
Zdroj: Nature Communications, 11, 1
Paczkowska, M, Barenboim, J, Sintupisut, N, Fox, N S, Zhu, H, Abd-Rabbo, D, Mee, M W, Boutros, P C, Abascal, F, Amin, S B, Bader, G D, Beroukhim, R, Bertl, J, Boroevich, K A, Brunak, S, Campbell, P J, Carlevaro-Fita, J, Chakravarty, D, Chan, C W Y, Chen, K, Choi, J K, Deu-Pons, J, Dhingra, P, Diamanti, K, Feuerbach, L, Fink, J L, Fonseca, N A, Frigola, J, Gambacorti-Passerini, C, Garsed, D W, Gerstein, M, Getz, G, Gonzalez-Perez, A, Guo, Q, Gut, I G, Haan, D, Hamilton, M P, Haradhvala, N J, Harmanci, A O, Helmy, M, Herrmann, C, Hess, J M, Hobolth, A, Hodzic, E, Hong, C, Hornshøj, H, Nielsen, M M, Pedersen, J S, Sidiropoulos, N & Weischenfeldt, J 2020, ' Integrative pathway enrichment analysis of multivariate omics data ', Nature Communications, vol. 11, no. 1, 735 . https://doi.org/10.1038/s41467-019-13983-9
Nature Communications, 11
Paczkowska, M, Barenboim, J, Sintupisut, N, Fox, N S, Zhu, H, Abd-Rabbo, D, Mee, M W, Boutros, P C, PCAWG Drivers and Functional Interpretation Working Group, Reimand, J & PCAWG Consortium 2020, ' Integrative pathway enrichment analysis of multivariate omics data ', Nature Communications, vol. 11, no. 1, 735 . https://doi.org/10.1038/s41467-019-13983-9
Nature communications, vol 11, iss 1
Nature Communications, Vol 11, Iss 1, Pp 1-16 (2020)
NATURE COMMUNICATIONS
Nature Communications, 11 (1)
Nature Communications
Paczkowska, Marta; Barenboim, Jonathan; Sintupisut, Nardnisa; Fox, Natalie S; Zhu, Helen; Abd-Rabbo, Diala; Mee, Miles W; Boutros, Paul C; Reimand, Jüri (2020). Integrative pathway enrichment analysis of multivariate omics data. Nature communications, 11(1), p. 735. 10.1038/s41467-019-13983-9
ISSN: 2041-1723
DOI: 10.1038/s41467-019-13983-9
Popis: Multi-omics datasets represent distinct aspects of the central dogma of molecular biology. Such high-dimensional molecular profiles pose challenges to data interpretation and hypothesis generation. ActivePathways is an integrative method that discovers significantly enriched pathways across multiple datasets using statistical data fusion, rationalizes contributing evidence and highlights associated genes. As part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumor types, we integrated genes with coding and non-coding mutations and revealed frequently mutated pathways and additional cancer genes with infrequent mutations. We also analyzed prognostic molecular pathways by integrating genomic and transcriptomic features of 1780 breast cancers and highlighted associations with immune response and anti-apoptotic signaling. Integration of ChIP-seq and RNA-seq data for master regulators of the Hippo pathway across normal human tissues identified processes of tissue regeneration and stem cell regulation. ActivePathways is a versatile method that improves systems-level understanding of cellular organization in health and disease through integration of multiple molecular datasets and pathway annotations.
Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.
Databáze: OpenAIRE