Phytofabricated silver nanoparticles: Discovery of antibacterial targets against diabetic foot ulcer derived resistant bacterial isolates

Autor: Rajasekar Panchamoorthy, Benedict C. Paul, Sumathy Arockiasamy, Selvakumar Thanganadar Appapalam
Rok vydání: 2020
Předmět:
Zdroj: Materials scienceengineering. C, Materials for biological applications. 117
ISSN: 1873-0191
Popis: The present study selected the predominant multi antibiotic-resistant diabetic foot ulcer (DFU) derived bacterial isolates such as Pseudomonas aeruginosa (PA), Escherichia coli (EC), Staphylococcus aureus (SA) and Bacillus subtilis (BS) and evaluated their response against the well-characterized Aerva lanata (AL) reduced multiple phytochemicals fabricated silver nanoparticles (AL-AgNPs). The overnight culture of DFU isolates was processed and subjected to various studies such as antimicrobial activity, growth kinetics, biofilm disruption, reactive oxygen species (ROS), membrane leakage, membrane permeability, and damage and genotoxicity. The molecular docking of AL phytochemicals was also performed with bacterial enzyme DNA gyrase. Interestingly, AL-AgNPs were produced the remarkable antibacterial effect against the resistant DFU isolates, which was closely similar to the effect of AL-AgNPs observed against the reference strains. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of AL-AgNPs against the DFU isolates were found to be 5–15 μg/mL and 10–20 μg/mL, respectively. The AL-AgNPs were depicted a concentration-dependent growth inhibition of DFU bacterial isolates. The MIC and MBC of AL-AgNPs were effectively destroyed the preformed biofilms of DFU isolates. Furthermore, the MBC of AL-AgNPs was displayed the increased intracellular ROS accumulation, membrane leakage, permeability and damage, and genotoxicity in the DFU isolates. Additionally, the in silico study revealed that the AL phytochemicals were fitted over the binding pocket of the DNA gyrase B subunit. The observed results were confirmed that the negative impacts of the AL-AgNPs at the level of the membrane and intracellular components of DFU isolates.
Databáze: OpenAIRE