Deep Learning for Spatio-Temporal Modeling of Dynamic Spontaneous Emotions

Autor: Dawood Al Chanti, Alice Caplier
Přispěvatelé: GIPSA - Architecture, Géométrie, Perception, Images, Gestes (GIPSA-AGPIG), Département Images et Signal (GIPSA-DIS), Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Grenoble Images Parole Signal Automatique (GIPSA-lab ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Jazyk: angličtina
Rok vydání: 2018
Předmět:
3D-CNN
SPP-net
Computer science
Context (language use)
02 engineering and technology
010501 environmental sciences
01 natural sciences
Facial recognition system
[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]
Deep Learning
[STAT.ML]Statistics [stat]/Machine Learning [stat.ML]
ConvLSTM
0202 electrical engineering
electronic engineering
information engineering

Spatiotemporal Features
Layer (object-oriented design)
0105 earth and related environmental sciences
Facial expression
Artificial neural network
business.industry
Deep learning
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
Pattern recognition
Expression (mathematics)
Human-Computer Interaction
Facial Expression
Dynamic Emotion
Face (geometry)
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
020201 artificial intelligence & image processing
Artificial intelligence
business
Software
Zdroj: IEEE Transactions on Affective Computing
IEEE Transactions on Affective Computing, Institute of Electrical and Electronics Engineers, 2018, pp.1-1. ⟨10.1109/TAFFC.2018.2873600⟩
ISSN: 1949-3045
DOI: 10.1109/TAFFC.2018.2873600⟩
Popis: International audience; Facial expressions involve dynamic morphological changes in a face, conveying information about the expresser's feelings. Each emotion has a specific spatial deformation over the face and temporal profile with distinct time segments. We aim at modeling the human dynamic emotional behavior by taking into consideration the visual content of the face and its evolution. But emotions can both speed-up or slow-down, therefore it is important to incorporate information from the local neighborhood frames (short-term dependencies) and the global setting (long-term dependencies) to summarize the segment context despite of its time variations. A 3D-Convolutional Neural Networks (3D-CNN) is used to learn early local spatiotemporal features. The 3D-CNN is designed to capture subtle spatiotemporal changes that may occur on the face. Then a Convolutional-Long-Short-Term-Memory (ConvLSTM) network is designed to learn semantic information by taking into account longer spatiotemporal dependencies. The ConvLSTM network helps considering the global visual saliency of the expression. That is locating and learning features in space and time that stand out from their local neighbors in order to signify distinctive facial expression features along the entire sequence. Non-variant representations based on aggregating global spatiotemporal features at increasingly fine resolutions are then done using a weighted Spatial Pyramid Pooling layer.
Databáze: OpenAIRE