On minimizing the maximum color for the 1–2–3 Conjecture
Autor: | Bi Li, Binlong Li, Julien Bensmail, Nicolas Nisse |
---|---|
Přispěvatelé: | Combinatorics, Optimization and Algorithms for Telecommunications (COATI), COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Xidian University, Northwestern Polytechnical University [Xi'an] (NPU), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), ANR-19-CE48-0013,DIGRAPHS,Digraphes(2019) |
Rok vydání: | 2021 |
Předmět: |
Conjecture
1-2-3 Conjecture Applied Mathematics 0211 other engineering and technologies 021107 urban & regional planning 0102 computer and information sciences 02 engineering and technology [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] 01 natural sciences small vertex colors Graph Vertex (geometry) Combinatorics Treewidth 010201 computation theory & mathematics Bounded function Bipartite graph edge labelings Discrete Mathematics and Combinatorics Chromatic scale proper vertex-colorings Connectivity Mathematics |
Zdroj: | Discrete Applied Mathematics Discrete Applied Mathematics, Elsevier, 2021, 289, pp.32-51. ⟨10.1016/j.dam.2020.09.020⟩ Discrete Applied Mathematics, 2021, 289, pp.32-51. ⟨10.1016/j.dam.2020.09.020⟩ |
ISSN: | 0166-218X |
DOI: | 10.1016/j.dam.2020.09.020 |
Popis: | International audience; The 1-2-3 Conjecture asserts that, for every connected graph different from K2 , its edges can be labeled with 1,2,3 so that, when coloring each vertex with the sum of its incident labels, no two adjacent vertices get the same color. This conjecture takes place in the more general context of distinguishing labelings, where the goal is to label graphs so that some pairs of their elements are distinguishable relatively to some parameter computed from the labeling. In this work, we investigate the consequences of labeling graphs as in the 1-2-3 Conjecture when it is further required to make the maximum resulting color as small as possible. In some sense, we aim at producing a number of colors that is as close as possible to the chromatic number of the graph. We first investigate the hardness of determining the minimum maximum color by a labeling for a given graph, which we show is NP-complete in the class of bipartite graphs but polynomial-time solvable in the class of graphs with bounded treewidth. We then provide bounds on the minimum maximum color that can be generated both in the general context, and for particular classes of graphs. Finally, we study how using larger labels permits to reduce the maximum color. |
Databáze: | OpenAIRE |
Externí odkaz: |